
US03CBCA21 Unit 4

Payal Sheth Page 1

PROCEDURES

A stored procedure is a group of SQL and PL/SQL commands that execute certain task. In

contrast to trigger, which is automatically executes when a trigger event is occurred, the user

must call a procedure either from a program or manually. While a trigger is associated to only

one table or user, several users or applications can use a procedure.

 ADVANTAGES OF USING A PROCEDURE OR FUNCTION:

1. Security:

Stored procedures and functions can help enforce data security. For e.g. by giving

permission to a procedure or function that can query a table and granting the procedure

or function to users, permissions to manipulate the table itself need not be granted to

users.

2. Performance:

It improves database performance in the following way:

 Amount of information sent over a network is less.

 No compilation step is required to execute the code.

 Once the procedure or function is present in the shared pool of the SGA retrieval

from disk is not required every time different users call the procedure or function

i.e. reduction in disk Input / Output.

3. Memory Allocation:

The amount of memory used reduces as stored procedures or functions have shared
memory capabilities. Only one copy of procedure needs to be loaded for execution by
multiple users. Once a copy of the procedure or function is opened in the Oracle
engine’s memory, other users who have permissions may access them when required.

4. Productivity:

By writing procedures and functions redundant coding can be avoided, increasing
productivity

5. Integrity:

A procedure or function needs to be tested only once to guarantee that it returns an
accurate result. Since procedures and functions are stored in the Oracle engine they

US03CBCA21

Payal Sheth

become a part of the engine’s resource. Hence the responsibility of maintaining their
integrity rests with the Oracle engine. The Oracle engine has high level of in
security and hence integrity of procedures or functions can be safely left to the Oracle
engine.

 SYNTAX FOR CREATING A PROCEDURE:

 CREATE [OR REPLACE] PROCEDURE <PROCEDURE_

 [Parameter1 {IN, OUT, IN OUT}, [Parameter2 {IN, OUT, IN OUT},...]]

 {IS/AS}

 [CONSTANT / VARIABLE Declaration;]

 BEGIN

 Executable statements;

 [EXCEPTION

 Exception handling statements;]

 END;

 TYPES OF PARAMETERS:

 IN - This parameter passes

value. It cannot be change.

 OUT - The OUT parameter passes a value back from the program. This value is write

only value (printable value).

 IN OUT - This parameter passes the value into the program

from the program. This value is read and then it written.

become a part of the engine’s resource. Hence the responsibility of maintaining their
egrity rests with the Oracle engine. The Oracle engine has high level of in

security and hence integrity of procedures or functions can be safely left to the Oracle

SYNTAX FOR CREATING A PROCEDURE:

CREATE [OR REPLACE] PROCEDURE <PROCEDURE_NAME>

[Parameter1 {IN, OUT, IN OUT}, [Parameter2 {IN, OUT, IN OUT},...]]

[CONSTANT / VARIABLE Declaration;]

Executable statements;

Exception handling statements;]

This parameter passes a value into the program. This value is read only type of

value. It cannot be change.

The OUT parameter passes a value back from the program. This value is write

only value (printable value).

This parameter passes the value into the program and returns the value

from the program. This value is read and then it written.

 Unit 4

 Page 2

become a part of the engine’s resource. Hence the responsibility of maintaining their
egrity rests with the Oracle engine. The Oracle engine has high level of in-built

security and hence integrity of procedures or functions can be safely left to the Oracle

a value into the program. This value is read only type of

The OUT parameter passes a value back from the program. This value is write

and returns the value

US03CBCA21 Unit 4

Payal Sheth Page 3

 COMPARISON BETWEEN THE PARAMETERS:

IN OUT IN OUT

Default mode Must be specified Must be specified

Value is passed into
subprogram

Returned to calling
environment

Passed into subprogram;
returned to calling

environment

Formal parameter acts as a
constant

Uninitialized variable Initialized variable

Actual parameter can be a
literal, expression, constant, or

initialized variable
Must be a variable Must be a variable

Can be assigned a default
value

Cannot be assigned a
default value

Cannot be assigned a
default value

 HOW TO EXECUTE OR RUN A PROCEDURE:

SQL > SELECT * FROM <Table-name>;

SQL > @ <Procedure-file name>.SQL;

Procedure is successfully created…

 OR

Procedure is created with compilation error…

SQL > SHOW ERRORS;

OR

SQL > SELECT * FROM USER_ERRORS;

SQL > EXECUTE <Procedure-name> (Parameter Value);

SQL > SELECT * FROM <Table-name>;

� NOTE: - If your user doesn’t have EXECUTE permission then write the following

command.

 GRANT EXECUTE ON <PROCEDURE-NAME> TO <USER-NAME>;

 SYNTAX FOR DELETING A PROCEDURE:

DROP PROCEDURE <PROCEDURE_NAME>;

 EXAMPLES OF PROCEDURE:

US03CBCA21 Unit 4

Payal Sheth Page 4

1. Write a simple procedure without any parameter that updates the values in the EMP

table. (P_RAISE_SAL.SQL)

CREATE OR REPLACE PROCEDURE RAISE_SAL
IS
BEGIN

UPDATE EMP SET SAL =SAL+ SAL*0.10;
END;
/

SQL>@P_RAISE_SAL.SQL;
or
SQL>EXECUTE RAISE_SAL;

2. Write a simple procedure that increases the salary of employees for the given

department no by percentage inputted by the user using IN parameter.
(P_RAISE_SAL2.SQL)

CREATE OR REPLACE PROCEDURE RAISE_SAL2 (VDEPT IN EMP.DEPTNO %TYPE, VPER IN
NUMBER)
IS
BEGIN

 UPDATE EMP SET SAL =SAL+ SAL*(VPER/100) WHERE DEPTNO=VDEPT;
END;
/

SQL>@P_RAISE_SAL2.SQL;
SQL>EXECUTE RAISE_SAL2 (10,20);

3. Write a procedure that search’s whether the given employee number is present or not
in the table. (P_SEARCH_EMP.SQL)

SET SERVEROUTPUT ON

CREATE OR REPLACE PROCEDURE SEARCH_EMP
(VEMPNO IN EMP.ENO%TYPE, VNAME OUT VARCHAR2)
IS
BEGIN
 SELECT ENAME INTO VNAME FROM EMP WHERE ENO = VEMPNO;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (TO_CHAR(VEMPNO) || 'NOT FOUND');
END;
/

US03CBCA21 Unit 4

Payal Sheth Page 5

SQL>@P_SEARCH_EMP.SQL;
SQL>VARIABLE EMP_NAME VARCHAR2;
SQL>EXECUTE SEARCH_EMP(101,EMP_NAME);
SQL>PRINT EMP_NAME;

4. Write a PL/SQL block to call the SEARCH_EMP procedure.

SET SERVEROUTPUT ON
DECLARE
 M_NAME EMP.ENAME%TYPE;
BEGIN

 SEARCH_EMP (1000, M_NAME);
 DBMS_OUTPUT.PUT_LINE (‘ THE EMPLOYEE NO 1000’ || M_NAME);

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (TO_CHAR (VEMPNO) || 'NOT FOUND');

END;
/

5. Write a procedure that explains the use of IN OUT parameter by updating the value of
salary. (P_UPDADTESAL)

CREATE OR REPLACE PROCEDURE UPDATESAL (NO IN NUMBER, INC_SAL OUT NUMBER)
IS

 SAL1 NUMBER;

BEGIN

 SELECT SAL INTO SAL1 FROM EMP WHERE ENO = NO;
 INC_SAL: = INC_SAL + SAL1;
 UPDATE EMP SET SAL = INC_SAL WHERE ENO = NO;

 EXCEPTION

 WHEN NO_SALARY_FOUNE THEN
 RAISE_APPLICATION_ERROR (-20250, ‘ NO SALARY FOUND’);

END;
/

6. Write a PL/SQL block that calls the UPDATESAL procedure.

SET SERVEROUTPUT ON

US03CBCA21 Unit 4

Payal Sheth Page 6

DECLARE

 ENO NUMBER: = 100;
 INC_SAL NUMBER: = 500;

BEGIN

 UPDATESAL (ENO, INC_SAL);
 DBMS_OUTPUT.PUT_LINE (‘UPDATED SALARY’ || INC_SAL);

 END;

/

FUNCTIONS

Functions are also collection of SQL and PL/SQL code, which can return a value to the caller or

to caller PL/SQL block. A function is similar to a stored procedure. The main difference between

them is that function returns a value and a stored procedure doesn’t return a value.

 DIFFERENTIATE BETWEEN A FUNCTION AND A PROCEDURE:

Unlike a procedure, functions can return a value to the caller whereas the procedures

cannot return a value. This value is return by using RETURN keyword within the function. A

function can return a single value to the caller.

 A Function A Procedure

1. Function must return a value. Procedure it is optional and it does not

return a value.

2. Functions can have only input

parameters for it.

Procedures can have input/output

parameters.

3. Function takes only one input

parameter and it is mandatory

Procedure may take o to n input

parameters.

4. Functions can be called from Procedure. Procedures cannot be called from

Function.

 SYNTAX FOR CREATING A FUNCTION:

 CREATE [OR REPLACE] FUNCTION <PROCEDURE_NAME>

 [Parameter1 {IN}, [Parameter2 {IN},...]]

US03CBCA21 Unit 4

Payal Sheth Page 7

 RETURN DataType

 {IS/AS}

 [CONSTANT / VARIABLE Declaration;]

 BEGIN

 Executable statements;

 [EXCEPTION

 Exception handling statements;]

 RETURN Return_value;

 END;

 SYNTAX FOR DELETING A FUNCTION:

DROP FUNCTION <FUNCTION_NAME>;

 HOW TO EXECUTE OR RUN A FUNCTION:

SQL > @ <function-filename>.SQL;
SQL > VARIABLE <VARIABLE_NAME> datatype;
SQL> EXECUTE: <VARIABLE_NAME>: =<function-name>(Parameter Value);
SQL > PRINT <VARIABLE_NAME>;
OR
 Write a PL/SQL block that calls the function.
SQL > SHOW ERRORS;
OR
SQL > SELECT * FROM USER_ERRORS;

NOTE: - If your user doesn’t have EXECUTE permission then write the following
command.

 GRANT EXECUTE ON <FUNCTION-NAME> TO <USER-NAME>;

 EXAMPLES OF FUNCTION:

7. Write a function that returns the square of the given number. (F_SQUARE.SQL)

CREATE OR REPLACE FUNCTION SQUARE (NO IN NUMBER)
RETURN NUMBER
IS

BEGIN

US03CBCA21 Unit 4

Payal Sheth Page 8

 RETURN NO*NO;

END;
/
SQL>@F_SQUARE.SQL;
SQL>VARIABLE ANS NUMBER;
SQL>EXECUTE: ANS: = SQUARE (5);
SQL>PRINT ANS;
 OR
SQL>SELECT SQUARE (5) FROM DAUL;

8. Write a function display the string in reverse order. (F_REVERSE.SQL)

CREATE OR REPLACE FUNCTION STR_REVERSE (V_STR IN VARCHAR2)
RETURN VARHCAR2
IS
R_STR VARCHAR2 (80): = ‘ ‘;
BEGIN

 FOR I IN REVERSE 1..LENGTH (V_STR) LOOP
 R_STR: = RSTR || SUBSTR (V_STR, I, 1);
 END LOOP;
 RETURN R_STR;

END;
/

9. Write a function that calculates total number of employees that are working in the

given department. (F_CONTEMP.SQL)

CREATE OR REPLACE FUNCTION COUNTEMP (V_DEPTNO IN EMP.DEPTNO%TYPE)
RETURN NUMBER
IS
TOTAL_EMP NUMBER;

BEGIN

 SELECT COUNT (*) INTO TOTAL_EMP FROM EMP WHERE DEPTNO = V_DEPTNO;
 RETURN TOTAL_EMP;

END;

10. Write a function that returns balance for given account number. (F_BANK.SQL)

CREATE OR REPLACE FUNCTION BANK (M_NO IN NUMBER)
RETURN NUMBER
IS

M_BALANCE BANK_MASTER.BALANCE%TYPE;

US03CBCA21 Unit 4

Payal Sheth Page 9

BEGIN
 SELECT BALANCE INTO M_BALANCE FROM BANK_MASTER WHERE ACC_NO =
M_NO;
 RETURN M_BALANCE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN O;
 END;

11. Write a PL/SQL block that calls the BANK function. (F_CALL2.SQL)

SET SERVEROUTPUT ON
SET FEEDBACK OFF
SET VERIFY OFF
DECLARE

M_ACCNO BANK_MASTER.ACC_NO%TYPE;
TOTAL_BALANCE NUMBER (8,2);

BEGIN
 M_ACCNO: = &M_ACCNO;
 TOTAL_BALANCE: = BANK (M_ACCNO);

 IF TOTAL_BALANCE > 0 THEN
 DBMS_OUTPUT.PUT_LINE (‘ BALANCE IS ‘ || TOTAL_BALANCE);
 ELSE
 DBMS_OUTPUT.PUT_LINE (‘ ACCOUNT NUMBER IS NOT FOUND’);
 END IF;
 END;

TRIGGERS

The oracle engine allows the user to define the procedures that are executed by oracle engine

itself, when an insert, update or delete statement is issued against a table. The triggers are

standalone procedures that are fired implicitly (internally) by the oracle engine and not

explicitly by the user.

 USE OF DATABASE TRIGGERS:

1. A trigger can permit the DML statement against a table only if they are issued during the

regular business hours or on pre-mentioned weekdays.

2. The triggers can also be used to prevent invalid transactions & to enforce security to the
data.

US03CBCA21 Unit 4

Payal Sheth Page 10

 DIFFERENTIATE BETWEEN THE TRIGGER & PROCEDURE:

1. The triggers don’t accept the parameters whereas procedure can accept.

2. The oracle engine executes a trigger implicitly whereas to execute a procedure it must
explicitly called by the users.

 HOW TO APPLY THE DATABASE TRIGGERS?

A trigger has three basic parts. The following are the three basic parts:

1. Triggering Event or Statement:

It is a SQL statement that causes a trigger to be fired. It can be INSERT, UPDATE or
DELETE statement for a specific table.

2. Trigger Restriction:

A trigger restriction specifies a Boolean Expression that must be TRUE for the trigger
to fire. It is an option available for the triggers that are fired for each row. A trigger
restriction is specified using a WHEN clause.

3. Trigger Action:

A trigger action is the PL/SQL code to be executed when triggering statement is
encountered and the value of trigger restriction is TRUE. The PL/SQL block contains
SQL and PL/SQL statements.

 TYPES OF TRIGGERS:

1. Row Trigger:

A Row Trigger is fired each time a row in the table is affected by the triggering
statement. For example, if the UPDATE statement updates multiple rows of a table a
Row Trigger is fired once for each row affected by the UPDATE statement. If the
triggering statement affects no rows, the trigger is not executed at all.

2. Statement Trigger:

A Statement Trigger is fired once on behalf of the triggering statements,
independent of the number of rows the triggering statement affects (even if no rows
are affected).

 DIFFERENTIATE BETWEEN THE BEFORE AND AFTER TRIGGERS:

US03CBCA21 Unit 4

Payal Sheth Page 11

While defining a trigger it is necessary to specify the trigger timing that we must have to
specify when the triggering action is to be executed in relation to the triggering statement.
BEFORE and AFTER apply to both row and the statement triggers.

1. The BEFORE triggers execute the trigger action before the triggering statement is

executed.

2. The AFTER trigger executes the triggering action after the execution of triggering
statement.

Syntax:

CREATE OR REPLACE TRIGGER <TRIGGER_NAME>

{BEFORE/AFTER}

{INSERT/UPDATE/DELETE} [OF COLUMN] ON <TABLE_NAME>

[FOR EACH ROW]

[WHEN CONDITION]

[PL/SQL BLOCK]

 Syntax to drop a trigger:

DROP TRIGGER <TRIGGER_NAME>;

 GUIDELINE FOR CREATING A TRIGGER:

1. There can be only one trigger of a particular type that is for UPDATE, for INSERT, or for

DELETE.

2. Only one table can be specified in the triggering statement.

3. The triggers cannot include COMMIT, ROLLBACK and SAVEPOINT statements.

4. Inside the trigger the correlation name :NEW and :OLD can be made use of to refer to

data on the command line and data in the table respectively.

 EXAMPLES OF TRIGGERS:

12. Write a trigger to insert the existing values of the EMP table into NEWEMP table when

the record is deleted from EMP table.
 CREATE OR REPLACE TRIGGER TR_EMPDELETE

BEFORE DELETE ON EMP
FOR EACH ROW

DECLARE

US03CBCA21 Unit 4

Payal Sheth Page 12

 V_NO EMP.EMPNO%TYPE;
 V_NAME EMP.ENAME%TYPE;
 V_DEPTNO EMP.DEPTNO%TYPE;

BEGIN
 V_NO: =:OLD.EMPNO;
 V_NAME: =:OLD.ENAME;
 V_DEPTNO: =:OLD.DEPTNO;
 INSERT INTO NEWEMP (EMPNO, ENAME, DEPTNO) VALUES

(V_NO, V_NAME, V_DEPTNO);
END;
/

 HOW TO EXECUTE A TRIGGER:

SQL> START TR_EMPDELETE; OR @TR_EMPDELETE;

 Trigger is created………..

SQL> DELETE FROM EMP WHERE EMPNO = 100;
SQL> SELECT * FROM NEWEMP;

If trigger is created with compilation error then execute the following command:

SQL> SHOW ERROR;

To view the list of triggers created by user follow following steps:

SQL> DESCRIBE USER_TRIGGERS;
SQL> SELECT TRIGGER_NAME, TRIGGER_BODY FROM USER_TRIGGERS WHERE

TRIGGER_NAME = ‘TR_EMPDELETE’.
13. Write a trigger to insert the existing values of the EMP table into NEWEMP table when

the record is updated in EMP table.
CREATE OR REPLACE TRIGGER TR_EMPUPDATE
BEFORE UPDATE ON EMP
FOR EACH ROW

BEGIN
 INSERT INTO NEWEMP (EMPNO, ENAME, DEPTNO) VALUES

(:OLD.EMPNO, :OLD.ENAME, :OLD.DEPTNO);
END;
/

14. Write a trigger to insert the values into the NEWEMP table when the records are

inserted into the EMP table.

US03CBCA21 Unit 4

Payal Sheth Page 13

CREATE OR REPLACE TRIGGER TR_EMPINSERT
BEFORE INSERT ON EMP
FOR EACH ROW

BEGIN
 INSERT INTO NEWEMP (EMPNO, ENAME, DEPTNO) VALUES

(: NEW.EMPNO, : NEW.ENAME, : NEW.DEPTNO);

END;
/

15. Write a trigger for INSERT, UPDATE and DELETE operation in one program.

CREATE OR REPLACE TRIGGER TR_EMPALL
BEFORE INSERT OR UPDATE OR DELETE ON EMP
FOR EACH ROW

BEGIN

 IF INSERTING THEN
 INSERT INTO EMP_BACKUP (ENO, ENAME, SAL) VALUES
 (: NEW.ENO, : NEW.ENAME, : NEW.SAL);

ELSIF UPDATING THEN
 INSERT INTO EMP_BACKUP (ENO, ENAME, SAL) VALUES
 (:OLD.ENO, : OLD.ENAME, : OLD.SAL);

ELSIF DELETING THEN
 INSERT INTO EMP_BACKUP (ENO, ENAME, SAL) VALUES
 (:OLD.ENO, : OLD.ENAME, : OLD.SAL);
 END IF;

END;
/

16. Write a trigger to restrict user form using the table on Sunday.

SET SERVEROUTPUT ON
 SET FEEDBACK OFF
 SET VERIFY OFF

CREATE OR REPLACE TRIGGER TR_HOLIDAY
BEFORE INSERT OR UPDATE OR DELETE ON ITEM
FOR EACH ROW

US03CBCA21 Unit 4

Payal Sheth Page 14

BEGIN

 IF TRIM (TO_CHAR (SYSDATE, ‘Day’)) = ‘Sunday’ THEN
 RAISE_APPLICATION_ERROR (-20420, ‘ You cannot modify data on
Sunday’);
 END IF;

END;
/

17. Write a trigger that identifies the gender of the employee and according to the gender
sets MR. in front of MALE employees and MS. in front of FEMALE employee.

SET SERVEROUTPUT ON

 SET FEEDBACK OFF
 SET VERIFY OFF

CREATE OR REPLACE TRIGGER TR_GENDER
BEFORE UPDATE OR INSERT ON EMP
FOR EACH ROW

BEGIN

 IF : NEW.GENDER = ‘M’ THEN
 : NEW.ENAME: = ‘MR.’ || : NEW.ENAME;
 ELSE
 : NEW.ENAME: = ‘MS.’ || : NEW.ENAME;
 END IF;

END;
/

18. Write a trigger that restricts the entry of record if salary is greater then 8000 Rs.

CREATE OR REPLACE TRIGGER TR_TESTSAL
BEFORE INSERT OR UPDATE OF SAL ON EMP
FOR EACH ROW

BEGIN

 IF : NEW.SAL > 8000 THEN
 RAISE_APPLICATION_ERROR (-20200, ‘INCORRECT VALUE’);
 END IF;

US03CBCA21 Unit 4

Payal Sheth Page 15

END;
/

19. Write a trigger that deletes the record from NEWEMP table if the corresponding
record is deleted from EMP table.
CREATE OR REPLACE TRIGGER TR_DEL
BEFORE DELETE ON EMP
FOR EACH ROW
BEGIN

 DELETE FROM NEWEMP WHERE EMPNO = :OLD.EMPNO;

END;
/

 GENERATING PRIMARY KEY USING A SEQUENCE AND A TRIGGER:

20. Write a trigger that generates the primary key using a sequence.

CODE FOR SEQUENCE GENERATION:

CREATE SQEQUENCE SEQ_CLIENT
 INCREMENT BY 1
 START WITH 1;

CODE FOR PRIMARY KEY GENERATION USING A TRIGGER:

SET SERVEROUTPUT ON
 SET FEEDBACK OFF
 SET VERIFY OFF

CREATE OR REPLACE TRIGGER TR_CLIENT
BEFORE INSERT ON CLIENT_MASTER
FOR EACH ROW

DECLARE

 P_KEY VARCHAR2 (4);

BEGIN

 SELECT LPAD (TO_CHAR (SEQ_CLIENT.NEXTVAL), 4, ‘0’) INTO P_KEY FORM
DUAL;
 : NEW.CLIENT_NO: = ‘C’ || P_KEY;

US03CBCA21 Unit 4

Payal Sheth Page 16

END;
/

�NOTE: - Since the CLIENT_NO is generated automatically; the user must insert values in all
columns except CLIENT_NO column. See the following insert query.

 INSERT INTO CLIENT_MASTER (CLIENT_NAME, ADDRESS, CITY)
 VALUES (‘Amar’,’100 Station Road’, ‘Ahmedabad’);

PACKAGE

1. What is Package? List part of package.
Ans: A package is an Oracle object which holds other objects within it. Objects commonly held
with package are Function, Procedures, variables, constants, cursors and exceptions. Packages
can contain Pl/sql block of code or a subprogram that requires input from another pl/sql block.
Parts of package:

1) Package Specification : contains name of package, names of the data types of any
arguments

2) Package Body : contains definition of public objects

2. Explain advantages of PL/SQL Package.
Ans: Advantages of Package are:
 Modularity
Packages let you encapsulate logically related types, items, and subprograms in a named
PL/SQL module. Each package is easy to understand, and the interfaces between packages are
simple, clear, and well defined. This aids application development.
 Easier Application Design
When designing an application, all you need initially is the interface information in the package
specs. You can code and compile a spec without its body. Then, stored subprograms that
reference the package can be compiled as well. You need not define the package bodies fully
until you are ready to complete the application.
 Information Hiding
With packages, you can specify which types, items, and subprograms are public (visible and
accessible) or private (hidden and inaccessible). For example, if a package contains four
subprograms, three might be public and one private. The package hides the implementation of
the private subprogram so that only the package (not your application) is affected if the
implementation changes. This simplifies maintenance and enhancement. Also, by hiding
implementation details from users, you protect the integrity of the package.
 Added Functionality
Packaged public variables and cursors persist for the duration of a session. They can be shared
by all subprograms that execute in the environment. They let you maintain data across
transactions without storing it in the database.
 Better Performance

US03CBCA21 Unit 4

Payal Sheth Page 17

When you call a packaged subprogram for the first time, the whole package is loaded into
memory. Later calls to related subprograms in the package require no disk I/O. Packages stop
cascading dependencies and avoid unnecessary recompiling. For example, if you change the
body of a packaged function, Oracle does not recompile other subprograms that call the
function; these subprograms only depend on the parameters and return value that are declared
in the spec, so they are only recompiled if the spec changes.

3. Explain PL/SQL package with syntax and example.
Ans: Creating Package syntax:
Create or replace package <package_name> as
 <declaration of procedure or function>;
 <variable declaration>;
End <package_name>;

Creating package body syntax:
Create or replace package body <package_name> as
 <logic of procedure/function declared in package specification>;
End <package_name>;

Execution (Calling) of package:
SQL> Execute <package_name>.<subprogram_name> or
SQL> Call <package_name>.<subprogram_name>

If Your subprogram written in package return values to user or require input from user then
write PL/SQL block to call your package.
SQL> Declare
<variable declaration>;
Begin
<package_name>.<subprogram_name> ;
End;

Example:
Create a package that has a procedure that finds current salary of customer. Take customer id
from user.
TableName: Customers (id, salary)

Solution:
-- Package Specification
CREATE PACKAGE cust_sal AS
 PROCEDURE find_sal(c_id customers.id%type);
END cust_sal;

-- Package Body
CREATE OR REPLACE PACKAGE BODY cust_sal AS
 PROCEDURE find_sal(c_id customers.id%TYPE) IS

US03CBCA21 Unit 4

Payal Sheth Page 18

 c_sal customers.salary%TYPE;
 BEGIN
 SELECT salary INTO c_sal
 FROM customers
 WHERE id = c_id;
 dbms_output.put_line('Salary: '|| c_sal);
 END find_sal;
END cust_sal;

Execution of package
DECLARE
 code customers.id%type := &cc_id;
BEGIN
 cust_sal.find_sal(code);
END;

	CODE FOR SEQUENCE GENERATION:

	CODE FOR PRIMARY KEY GENERATION USING A TRIGGER:

