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Data Flow Diagram (DFD) 

What is a data flow diagram? 

A data flow diagram shows the way information flows through a process or system. It includes 
data inputs and outputs, data stores, and the various subprocesses the data moves through. DFDs 
are built using standardized symbols and notation to describe various entities and their 
relationships.  

Data flow diagrams visually represent systems and processes that would be hard to describe in a 
chunk of text. You can use these diagrams to map out an existing system and make it better or 
to plan out a new system for implementation. Visualizing each element makes it easy to identify 
inefficiencies and produce the best possible system.  

What is a Purpose (Use) of Data Flow Diagrams? 

Data flow diagrams are used by information technology professionals and systems analysts to 
document and show users how data moves between different processes in a system. Analysts 
generally start with an overall picture and then move on to the finer details of each process. 

Data flow diagrams provide a graphical representation of how information moves between 
processes in a system. Data flow diagrams follow a hierarchy; that is, a diagram may consist of 
several layers, each unique to a specific process or data function. 

Elements of DFD 

All data flow diagrams include four main elements: entity, process, data store and data flow. 

External Entity – Also known as actors, sources or sinks, and terminators, external entities 
produce and consume data that flows between the entity and the system being diagrammed. 
These data flows are the inputs and outputs of the DFD. Since they are external to the system 
being analyzed, these entities are typically placed at the boundaries of the diagram. They can 
represent another system or indicate a subsystem. 

Process – An activity that changes or transforms data flows. Since they transform incoming data 
to outgoing data, all processes must have inputs and outputs on a DFD. This symbol is given a 
simple name based on its function, such as “Ship Order,” rather than being labeled “process” on 
a diagram. In Gane-Sarson notation, a rectangular box is used and may be labeled with a 
reference number, location of where in the system the process occurs and a short title that 
describes its function. Processes are typically oriented from top to bottom and left to right on a 
data flow diagram. 
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Data Store – A data store does not generate any operations but simply holds data for later access. 
Data stores could consist of files held long term or a batch of documents stored briefly while they 
wait to be processed. Input flows to a data store include information or operations that change 
the stored data. Output flows would be data retrieved from the store. 

Data Flow – Movement of data between external entities, processes and data stores is 
represented with an arrow symbol, which indicates the direction of flow. This data could be 
electronic, written or verbal. Input and output data flows are labeled based on the type of data 
or its associated process or data store, and this name is written alongside the arrow. 

 

Types of DFD (Levels of DFD) 

Although all data-flow diagrams are composed of the same types of symbols, and the validation 
rules are the same for all DFDs, there are three main types of data-flow diagram: 

• Context diagrams — context diagram DFDs are diagrams that present an overview of the 
system and its interaction with the rest of the “world”. 

• Level 1 data-flow diagrams — Level 1 DFDs present a more detailed view of the system 
than context diagrams, by showing the main sub-processes and stores of data that make 
up the system as a whole. 

• Level 2 (and lower) data-flow diagrams — a major advantage of the data-flow modelling 
technique is that, through a technique called “levelling”, the detailed complexity of real-
world systems can be managed and modeled in a hierarchy of abstractions. Certain 
elements of any data-flow diagram can be decomposed (“exploded”) into a more detailed 
model a level lower in the hierarchy. 

 

 



Unit-4  US03CBCA27 

4 
Payal Sheth 

Symbols Used in Data Flow Diagram 

1. Data process 

A data process transforms data values. Here flow of data is transformed. E.g. Verify credits, 
updates inventory file. 

 

You can make a distinction between the following types of processes: 

2. External Entity  

 

A source or destination of data which is external to the system. E.g supplier, customer etc. 

3. Data store 

A data store stores data passively for later access. A data store responds to requests to store 
and access data. It does not generate any operations. A data store allows values to be 
accessed in an order different from the order in which they were generated.  

Input flows indicate information or operations that modify the stored data such as adding or 
deleting elements or changing values. Output flows indicate information retrieved from the 
store; this information can be an entire value or a component of a value.  

 

4. Data flow 

A data flow moves data between processes or between processes and data stores. As such, 
it represents a data value at some point within a computation and an intermediate value 
within a computation if the flow is internal to the diagram. This value is not changed.  

The names of input and output flows can indicate their roles in the computation or the type 
of the value they move. Data names are preferably nouns. The name of a typical piece of 
data, the data aspect, is written alongside the arrow.  
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Rules for Constructing DFD 

When creating data flow diagrams (DFD’s), there are certain rules which must be followed. These 
rules allow for the DFD to be make sense and also to be easily understood. In this blog I will go 
through the rules which must be followed and show practical examples of these rules. 

1. All data flows must flow to or from a process 

All flows of data must be either coming from or going to a process. External entities cannot flow 
directly to each other. A data flow cannot link a data store to an external entity. Data cannot 
move between data stores without first being processed. 

 

2. A Process must have at least one input flow and one output flow. 

When a process has input flow but no output flow, it is called a “black hole”. When a process has 
output flows but no input flows, it is called a “miracle”. A process must have at least one input 
flow and one outflow flow. 

 

3. The inputs to a process must be sufficient to produce output flows. 

A “grey hole” is when the outputs of a process are greater than the sum of its inputs. For example, 
if a customer’s name and address is an input, their bank details cannot be an output, as the 
process doesn’t have enough information to produce it. 
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4. Processes must transform data. 

When naming data flows, adjectives should be used which show how processing has changed the 
data flow. 

 

5. Data Flows cannot cross each other. 

The flows of data cannot cross each other. To overcome this problem, data stores and entities 
can be duplicated. However, processes cannot be duplicated. Data flows must be unidirectional. 

6. Entities must be labelled in lower case. 

 

Physical and Logical DFDs 

The DFDs that show “What is going on” instead of “How it is going on” is a logical DFD. DFDs that 

show how things happen and which are the actual physical components involved are known as 

physical DFDs. Logical DFDs help to get a clear idea of what the system has to achieve without 

getting into details like who is going to do it? How one is going to do it? Etc. But physical models 

are easier to visualize. Hence analyst begins with physical DFD before converting it to logical DFD. 

 

 

 

 

 

https://eternalsunshineoftheismind.files.wordpress.com/2013/02/picture3.png


Unit-4  US03CBCA27 

7 
Payal Sheth 

Physical DFD Logical DFD 

Data flow names include the implementation 

facts as names, numbers, media, timing etc. 

Data flow names describe the data they 

contain. They do not refer to the form or 

document on which they reside. 

Process names include the name of the 

processor i.e. person, department, computer 

system etc. 

Process names describe the work done 

without referring to e.g. Account Receivable, 

Order processing etc. 

Data Stores identify their computer and 

manual implementation. 

Physical location of data stores is irrelevant. 

Many times, the same data store may be 

shared by subsystems and processes. 

This is more realistic and implementation 

oriented. The PDFD are more detailed in 

nature. 

As the name suggests, this is more logical in 

format. This is more abstract than PDFD and 

less dependent on implementation steps. 

 

Merits of DFD 

o It aids in describing the boundaries of the system. 

o It is beneficial for communicating existing system knowledge to the users. 

o A straightforward graphical technique which is easy to recognize. 

o DFDs can provide a detailed representation of system components. 

o It is used as the part of system documentation file. 

o DFDs are easier to understand by technical and nontechnical audiences 

o It supports the logic behind the data flow within the system. 

Demerits of DFD 

o It makes the programmers little confusing concerning the system. 

o The biggest drawback of the DFD is that it simply takes a long time to create, so long that 

the analyst may not receive support from management to complete it. 

o Physical considerations are left out. 
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Prototype 

• The term prototype refers to a working model of an information system application.  

• The prototype does not contain all the features or perform all the necessary functions of 

the final system. 

• Rather, it includes sufficient elements to enable individuals to use the proposed system 

to determine what they like and don’t like and to identify features to be added or 

changed. 

Characteristics 

1. The prototype is a live, working application 

2. The purpose of prototyping is to test out assumptions made by analysts and users 

about required system features 

3. Prototypes are created quickly 

4. Prototypes evolve through an iterative process 

5. Prototypes are relatively inexpensive to build 

Reasons (Need) for System Prototyping 

Application prototyping is most effective in the development of information systems when 

certain conditions are met. Any of the following five application conditions suggests the need 

for prototyping: 

1. Requirements Not Known 

The nature of the applications is such that there is little information available about the 

features the system must have to meet its users’ requirements. 

Example: A national consumer products firm wishes to develop a voice mail 

system that can also trigger the preparation of selected printed reports. The firm 

has not used voice mail in the past. 

2. Requirements Need Evaluation 

Apparent information requirements of the organization and end users are known, but 

verification and assessment are needed. 

Example: A large university wishes to reduce the congestion and delay students 

face each term when registering for courses. A plan has been devised to allow 

students to enter identification information and course numbers from and push-

button, touch-tone telephone. The system will accept local or long-distance 

telephone calls. The specifications for a system to facilitate this process while 

minimizing errors and maintaining system integrity have been articulated. Security 

requirements have also been developed to prevent unauthorized use of the 

automated registration system. 
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3. High Cost 

The investment of financial resources, human effort, and time required to bring an 

application into existence is substantial. Other projects also complete for the same 

resources. 

Example: A city-wide online teller system will be installed in over one hundred 

branch offices by a large metropolitan bank. The costly system will be designed to 

provide for the instantaneous capture of information and updating of a central 

database. 

4. High Risk 

Inaccurate evaluation of system requirements or incorrect development of an application 

places an organization, its employees, or its resources in jeopardy. 

Example: A manufacturing floor control system will be designed to move materials 

in inventory from the company’s warehouse through the production process. The 

organization wishes to keep a minimum inventory on hand and yet not experience 

delay in the manufacturing process. A delay in any area, caused by error or 

insufficient materials, could cause a shutdown of the entire production process. 

Unplanned shutdowns damage material, destroy production schedules, and lead 

to the risk of losing those customers whose orders are not filled on time. 

5. New Technology 

A desire to install new technology, whether in the computer field, data communications, 

or other related areas, will open a new frontier for the organization. Many firms have no 

experience in using certain technology and neither do other organizations with whom 

they communicate. 

Example: A company wishes to develop a system permitting voice entry of 

customer orders: staff personnel will repeat order details aloud at a voice input 

unit, rather than keying the data for processing. 

Steps in Prototype Method 

The development of a prototype application proceeds in an orderly fashion, regardless of the 

particular tools used. 
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1. Identify Known Requirements 

• Before  a prototype is created, both user and systems analyst work together to 

identify the known requirements that must be met. To do so, they determine the 

purpose the system will serve and the scope of its capabilities. 

 

2. Develop Working Model 

• Prototyping uses an iterative development process. 

• Prior to the first iteration, systems analysts describe the prototype method to the 

users, explaining what activities will occur and in what sequence, and discussing 

the responsibilities of each participant. 

• It is helpful to begin the prototyping process by developing a general plan so that 

individuals know what to expect from each other and from the development 

process.  

• A timetable for the startup and proposed completion of the initial iteration should 

be constructed at this time. 

• To begin the first iteration, user and analyst jointly identify the data that are 

needed in the system and specify the output the application must produce. This 

means describing (1) the individual reports and documents the system should 

provide and (2) the layout of each. 

• The analyst also estimates the prototyping cost. 

Repeat as 

Needed 

Abandon 

Application 

Implement 

Application 

Redevelop 

Application 

Begin New 

Prototype Steps in prototype development method 
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• In developing the prototype, these components are prepared: 

o Command language dialogue or conversation between user and system 

o Input screens and formats 

o Essential processing modules 

o System output 

3. User Prototype 

• It is the user’s responsibility to work with the prototype and evaluate its features 

and operation. Experience with the system in the actual application setting should 

provide the familiarity needed to determine what changes or enhancements are 

necessary or which inadequate or undesirable features to eliminate. 

4. Review Prototype 

• During the evaluation, systems analysts will want to capture information on what 

users like and dislike, noticing why they react as they do. The information will 

influence the features the next version of the application should have. 

• It also provides insight into characteristics of the users and the business setting 

for the application- details that will influence not only the application, but the way 

it is later implemented. 

• Changes to the prototype are planned with users before they are made. 

5. Repeat as Needed 

• The process described may be repeated several times to evolve the application. 

Four to Six iterations are typical. 

• This process ends when both users and analyst agree that the system has evolved 

to include the necessary features or when it is evident that there is no benefit to 

additional iteration. 

6. Use of Prototypes 

• When the prototyping process is complete, a decision is made about how to 

proceed. There are four ways to proceed after the information gained from 

developing and using the prototype has been evaluated: discard the prototype 

and abandon the application project, implement the prototype, redevelop the 

application, or begin another prototype. 

i. Abandon Application 

▪ In some instances, the decision will be to discard the prototype and 

to abandon development of the application. Such a conclusion 

does not mean that the prototype process was a mistake or a waste 

of resources.  

▪ Rather, the information and experience gained by developing and 

using the prototype has led to a development decision. Perhaps 

user and analyst have learned that the system will be unnecessary 

i.e. an alternative solution was discovered during the prototyping 

process.  
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▪ Or, the experience suggested theta the approach was 

inappropriate. 

▪ In some cases, it may turn out that the event that triggered the 

development effort is a one-time occurrence. The prototype met 

the immediate need and the event is not expected to occur again. 

▪ Any of the above instances may suggest that further pursuit of the 

prototype or the full-function application should stop. Decision like 

this saves time and resources, allowing analysts to redirect their 

efforts to other application needs. 

ii. Implement Prototype 

▪ Sometimes the prototype becomes the actual system needed. In 

this case, it is implemented as is; no further development occurs. 

This decision is most likely to be made under one or more of the 

following circumstances: 

a. The prototype evolved led to an application consisting of 

the required features, capabilities, and performance 

characteristics. 

b. The application will be used infrequently and speed or 

efficiency or operation is not essential. 

c. The application does not affect or interact with other 

applications or data in the organization and meets the 

needs of its immediate users. 

d. The application environment is in a state of flux; it is difficult 

to determine more long term or stable operation needs. 

Thus, other development activities cannot be justified. The 

prototype will do for the time being. 

▪ When the operating environment is uncertain (meaning it is 

difficult to identify concrete requirements), the prototype may be 

implemented indefinitely.  

▪ Approximately half of the all prototypes are implemented as the 

working application. 

iii. Redevelop Application 

▪ When the application is redeveloped, emphasis is also placed on 

making the best possible use of system resources. Processing speed 

and response time take on greater importance, as does efficient 

use of storage. 

▪ Redeveloping an application can occur as part of the classical 

systems development life cycle method. The two most common 

ways of incorporating application prototyping are these: 

o The prototype is used as an alternative to the requirements 

determination activity; the prototype features serve as 
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requirements to be met through the development activities 

that follow. 

o The prototype is used as a substitute for the design and 

implementation of the working application, a skeleton from 

which the remainder of the system is constructed. 

iv. Begin New Prototype 

▪ The fourth alternative is to begin a new prototyping project. The 

information gained by developing and using the prototype will 

sometimes suggest the use of an entirely different approach to 

meet the organizer’s needs. It may reveal that the features of the 

application must be dramatically different if the existing prototype 

is inappropriate to demonstrate and evaluate those features. 

▪ Consequently, rather than jumping into a full-scale development 

effort with the newly acquired information, management may 

support the creation of another prototype model. 

Merits of Prototypes 

1. Reduced time and costs 

Prototyping improves the quality of the specifications and requirements provided 

to customers. With prototyping, customers can anticipate higher costs, needed 

changes and potential project hurdles, and most importantly, potential end result 

disasters. Strong prototyping can ensure product quality and savings for years to 

come. 

2. Improved and increased user involvement 

Most customer want to feel like they are involved with the intricate details of their 

project. Prototyping requires user involvement and enables them to see and 

interact with a working model of their project. With prototypes, customers can 

give their immediate feedback, request project changes and alter model 

specifications. Prototyping most importantly helps eliminate misunderstandings 

and miscommunications during the development process. 

3. Reduced time and costs 

Nothing makes customers happier than projects that come in under budget. 

Prototyping improves the quality of requirements and specifications provided to 

customers. Needed changes detected later in development cost exponentially 

more to implement. With prototyping, you can determine early what the end user 

wants with faster and less expensive software. 
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Demerits of Prototypes 

1. Insufficient analysis 

A focus on a limited prototype can distract developers from properly analyzing the 

complete project. The potential end result: A potential overlooking of better 

solutions, incomplete specifications or the conversion of limited prototypes into 

poorly engineered and developed final projects that are hard to maintain. 

2. User confusion 

The worst-case scenario of any prototype is customers mistaking it for the finished 

project. Customers seeing a rough prototype may not understand it merely needs 

to be finished or polished. Also, customers can wrongly perceive the prototype to 

accurately model the performance of the final system. Customers may also grow 

fond of prototype features that are not part of the final system. 

3. Developer misunderstanding of user objectives 

For every project to be successful, developers and customers must be on the same 

page and share the same project objectives. If customers require all proposed 

features of a prototype be included in the final product, this can lead to team and 

mission conflicts. 

4. Excessive Development Time 

Remember, prototypes are by nature designed to be developed quickly. If a 

developer spends too much time developing a complex prototype, the project can 

run into roadblocks (especially if there are disagreements over prototype details) 

and run over both time and cost budgets. 

 


