
US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

If…Else Statements

It is used to execute one or more statement conditionally. You can use single line syntax or multi

line syntax.

Syntax : 1) If <condition> then <statement>

Syntax : 2) If <condition> then

<statement>

End if

Syntax : 3) If condition Then

 [statements]

 [ElseIf condition-n Then

 [elseifstatements] …]

 [Else

 [elsestatements]]

End If

 If condition is true, VB .NET executes all the statements following the then keyword.

 You can use either single line or multiple-line syntax to execute just 1 statement.

 You can use comparison operators in the condition to generate a logical result that's true or

false.

 If condition is True, the statements immediately following the Then keyword in the body

of the If statement will be executed, and the If statement will terminate before the code in

any ElseIf or Else statement is executed.

 If condition is False, the following ElseIf statements are evaluated, if there are any; this

statement lets you test additional conditions, and if any are True, the corresponding code

(elseifstatements above) is executed and the If statement terminates. If there are no ElseIf

statements, or if none of their conditions are True, the code in the Else statement

(elsestatements above), if there is one, is executed automatically.

Example Dim a, b, c As Integer

a = InputBox(“Enter A: “)

b = InputBox(“Enter B: “)

c = InputBox(“Enter C: “)

Page 1 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

 If a>b And a>c Then

 MsgBox(“A is Maximum”)

 ElseIf b>a And b>c Then

 MsgBox(“B is Maximum”)

 Else

 MsgBox(“C is Maximum”)

 End If

Select Case statement:

Executes one of several groups of statements depending on the value of an expression.

Syntax: Select Case testexpression

 [Case expressionlist-n

 [statements-n]]…

 [Case Else

 [elsestatements]]

End Select

 Testexpression: Required It may be any numeric or string expression.

 Expression list_n: it may be

 expression or

 expression To expression

 Is expression operator expression

 statements-n : one or more statements executed if test expression doesn’t match any of the

case clause.

 If test expression matches any case expression list expression then statement following that

clause is executed upto the next case clause or for the last clause or up to End select.

 After performing select……..case, control executes the next statement after the End select.

 If test expression matches more than 1 expression then only the statements which follow the

1st match are executed.

 The Case Else clause is used to indicated the else statements to be executed if no match is

found between test expression and expression list.

Page 2 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

 Select case statement can be nested. Each nested select case statement must have a matching

End select statement.

Example: Dim no1, no2 as integer

 No2 =20

 No1 = val (Inputbox (“Enter the value of no1:”)

 Select case no1

Case 1:

Msgbox(“The value of no1 is:”) & no1

Case 2:

Msgbox(“The value of no1 is:”) & no1

Case 3 To 15:

Msgbox(“The value of no1 is between 3 to 5”)

Case Is > no2:

Msgbox no1 & “is grater than” & no2

Case else:

Msgbox (“nothing”);

End select.

With Statement

The With statement is not a loop, but it can be as useful as a loop. User can use the With

statement to execute statements using a particular object.

Syntax: With object

 [statements]

 End With

Example:

With TextBox1

 .Height = 1000

 .Width = 3000

 .Text = "Welcome to Visual Basic"

End With

Page 3 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Do Loop:

The Do loop keeps executing its enclosed statements while or until condition is true. You can

also terminate a Do loop at any time with an Exit Do statement. The Do loop has two

versions; you can either evaluate a condition at the beginning:

Syntax: Do [{While | Until} condition]

 [statements]

 [Exit Do]

 [statements]

Loop

OR

Syntax: Do

 [statements]

 [Exit Do]

 [statements]

Loop [{While | Until} condition]

 A loop can be executed either while the condition is true or until the condition becomes true.

 When VB executes the loops, if first evaluates the condition if condition is false, the Do…

While or Do…Until loop is skipped & execute the statement followed by the loop.

 The Do…Loop can execute any number of times as long as condition is true.

 If the condition is initially false, the statements may never execute.

 Exit Do statement terminates the loop.

Example:

i=5 i=1

Do While i>0 Do until i<=5

Msgbox i me.point i

i=i-1 i=i+1

loop loop

Page 4 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

For Loop

The For loop is probably the most popular of all Visual Basic loops. The Do loop doesn't need a

loop index, but the For loop does; a loop index counts the number of loop iterations as the loop

executes.

Syntax: For index = start To end [Step step]

 [statements]

 [Exit For]

 [statements]

Next [index]

 The keywords in square brackets are optional.

 The keyword counter, start, end, increment all one of numeric type.

 Index: Required Numeric variable. The variable can’t be a Boolean or an array element.

 End: Required find value of counter.

 Step: Optional Counter is changed each time through the loop. If not specified then step

defaults to one.

 Statement: Optional one or more statement between for and Next that the executed the

specified number of times.

 Exit For: to terminate the loop without executing the statements after exit for keyword.

 The loop is executed as many times as required for the counter to reach the end value.

 The increment argument can be either positive or negative. If start is greater than end, the

value of increment must be negative. If not the loop’s body can’t be executed.

Example: for i=0 To 10 for i=10 To 1 step -1

 msgbox i msgbox i

 Next Next.

If I were to use a step size of 2:

 For i = 0 To n Step 2

 MsgBox(i)

 Next

Page 5 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

For Each … Next Loop

You use the For Each…Next loop to loop over elements in an array or a Visual Basic collection.

This loop automatically loops over all the elements in the array or collection.

Syntax: For Each element In group

 [statements]

 [Exit For]

 [statements]

 Next [element]

Example:

 Dim intIDArray(3), intArrayItem As Integer

 intIDArray(0) = 0

 intIDArray(1) = 1

 intIDArray(2) = 2

 intIDArray(3) = 3

 For Each intArrayItem In intIDArray

 System.Console.WriteLine(intArrayItem)

 Next intArrayItem

While Loop

While loops keep looping while the condition they test remains true, so you use a While loop if

you have a condition that will become false when you want to stop looping.

Syntax: While condition

 [statements]

End While

 If condition is true, all the statements are executed & when the wend statement is reached,

control is returned to the While statement which evaluate condition again.

 If condition is still true, the process is repeated.

 If condition is false, the program executes the statement following Wend statement.

Page 6 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Example: i=5

 While i>=0

total=total+i

i=i-1

End while

 Working with Procedure :--

 Dividing your code into procedure allows you to break it up into more modular units. As
your program become longer that’s invaluable as it stops everything from becoming too
cultured

In visual basic , all executable code must be in procedure

There are two typed of procedure
1) sub procedure (sub routine)
2) Functions

Procedure:

 A procedure is a set of one or more program statements that can be run or call by referring to

the procedure name.

 We can divide the big program into small procedures.

 Due to procedure the application is easier to debug and easier to find error.

 The main advantage of procedure is its reusability.

 Procedures are categorized into two categories:

1) In-built procedure

2) User-defined procedure

 There are 4 types of procedure in VB.Net.

1) Sub procedure: It does not return value.

2) Event handling procedure: These are Sub procedures that execute in response to an event

triggered by user action.

3) Function procedures: they return a value.

4) Property procedures: used in object oriented concept.

Page 7 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Sub Procedure: Also known as Sub Routine.

 Sub procedure may or may not have arguments. Arguments are not compulsory.

 A sub procedure does not return the value.

 By Val is by default argument type.

 To declare procedure Sub keyword is used.

Sub Statement: Declares the name, parameters, and code that define a Sub procedure.

Syntax: [Private | Public] Sub name [(parameterlist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub

 name : It specifies name of the procedure.

 parameterlist : It is optional. It specifies the list of local variable names representing the

parameters of this procedure. Specifies the parameters a procedure expects when it is called.

 Multiple parameters are separated by commas. The following is the syntax for one parameter.

[optional] [ByVal | ByRef] varname[()] [As type] [= defaultvalue]

 Optional: Optional. Specifies that this parameter is not required when the procedure is

called.

 ByVal : It is Optional. Specifies that the procedure cannot replace or reassign the variable

element underlying the corresponding argument in the calling code.

 ByRef : It is Optional. Specifies that the procedure can modify the underlying variable

element in the calling code the same way the calling code itself can.

 parametername : It is Required. Name of the local variable representing the parameter.

 parametertype : Required if Option Strict is On. Data type of the local variable

representing the parameter.

 defaultvalue : Required for Optional parameters. Any constant or constant expression that

evaluates to the data type of the parameter. If the type is Object, or a class, interface, array,

or structure, the default value can only be Nothing.

Page 8 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Example:

 Dim ans As Double

 Private Sub sMsg()

 MsgBox("Hello")

 End Sub

 Private Sub sum1(ByRef n1 As Integer)

 MsgBox(n1 + 20)

 End Sub

Private Sub butOk_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles butOk.Click

 Call sMsg()

 Call sum1(Val(Me.txtN1.Text))

End Sub

Working with Modules:-

 Visual Basic uses the term module level to apply equally to modules,classes and
structures you can declare elements at this level by placing the declaration statement out
side of any procedure or block within the module class or structure .

 When you make a declaration at the module level the accessibility you choose determines
the scope. The namespace that contains the Module , class or Structure also affects the
scope

 Elements for which you declare private accessibility are available for reference to every
procedure in that module . but , not to any code in a different module

The Dim statement at Module level defaults to Private accessibility . o , it is equivalent to using
the private statement. However , you can make the scope and accessibility more obvious by
using private.

Class :--
 A class means collection of methods/functions. Method/function accepts parameters, process

set of codes which you have written in the module/function and returns the output to the
caller. Collection of class is called Class Library. When you complie the Class Library it
becomes a DLL.

 A class is simply an abstract model used to define new data types. A class may contain any
combination of encapsulated data (fields or member variables), operations that can be
performed on the data (methods) and accessors to data (properties). For example, there is a
class String in the System namespace of .Net Framework Class Library (FCL). This class
contains an array of characters (data) and provide different operations (methods) that can be

Page 9 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

applied to its data like ToLowerCase(), Trim(), Substring(), etc. It also has some properties
like Length (used to find the length of the string).

 A class in VB.Net is declared using the keyword Class and its members are enclosed with the
End Class marker

 NameSpace: If you declared an element at module level using the friend or public
statement it becomes available to all procedures throughout the entire namespace in which it
is declared.
Not that , an element accessible in a namespace is also accessible from inside any namespace
nested inside that namespace .
A namespace is used in .NET Framework to define the scope of a set of related object. The
namespace scope lets you organize code and gives you a way to create globally unique types.
Whether or not you explicitly declare a namespace in a source file, the compiler adds a
default namespace. This unnamed namespace, sometimes referred to as the global
namespace, is present in every file.

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple
namespaces, which can in turn contain other namespaces. Namespaces prevent ambiguity
and simplify references when using large groups of objects such as class libraries.

For example, the .NET Framework defines the ListBox class in the System.Windows.Forms
namespace. The following code fragment shows how to declare a variable using the fully
qualified name for this class:

Ex: Dim LBox As System.Windows.Forms.ListBox

Introduction of Windows Forms :--

Windows Forms is the new platform for Microsoft Windows application development, based on
the .NET Framework. This framework provides a clear, object-oriented, extensible set of classes
that enable you to develop rich Windows applications. Additionally, Windows Forms can act as
the local user interface in a multi-tier distributed solution.

A form is a bit of screen real estate, usually rectangular, that you can use to present information
to the user and to accept input from the user. Forms can be standard windows, multiple document
interface (MDI) windows, dialog boxes, or display surfaces for graphical routines. The easiest
way to define the user interface for a form is to place controls on its surface. Forms are objects
that expose properties which define their appearance, methods which define their behavior, and
events which define their interaction with the user. By setting the properties of the form and
writing code to respond to its events, you customize the object to meet the requirements of your
application.

As with all objects in the .NET Framework, forms are instances of classes. The form you create
with the Windows Forms Designer is a class, and when you display an instance of the form at
run time, this class is the template used to create the form. The framework also allows you to
inherit from existing forms to add functionality or modify existing behavior. When you add a

Page 10 of 16

http://msdn.microsoft.com/en-us/library/system.windows.forms(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.listbox(v=vs.100).aspx

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

form to your project, you can choose whether it inherits from the Form class provided by the
framework, or from a form you have previously created.

Form Life Cycle

 Move: This event occurs when the form is moved. Although by default, when a form is
instantiated and launched, the user does not move it, yet this event is triggered before the Load
event occurs.

 Load: This event occurs before a form is displayed for the first time.
 VisibleChanged: This event occurs when the Visible property value changes.
 Activated: This event occurs when the form is activated in code or by the user.
 Shown: This event occurs whenever the form is first displayed.
 Paint: This event occurs when the control is redrawn.
 Deactivate: This event occurs when the form loses focus and is not the active form.
 Closing: This event occurs when the form is closing.
 Closed: This event occurs when the form is being closed.

MsgBox Function

Syntax: MsgBox(Prompt [, Buttons As MsgBoxStyle = MsgBoxStyle.OKOnly [, Title])

 Prompt—A string expression displayed as the message in the dialog box. The maximum

length is about 1,024 characters (depending on the width of the characters used).

 Buttons—The sum of values specifying the number and type of buttons to display, the icon

style to use, the identity of the default button, and the modality of the message box. If you

omit Buttons, the default value is zero. See below.

 Title—String expression displayed in the title bar of the dialog box. Note that if you omit

Title, the application name is placed in the title bar.

You can find the possible constants to use for the Buttons argument in Table

MsgBox constants.

Constant Value Description

OKOnly 0 Shows OK button only.

OKCancel 1 Shows OK and Cancel buttons.

AbortRetryIgnore 2 Shows Abort, Retry, and Ignore buttons.

YesNoCancel 3 Shows Yes, No, and Cancel buttons.

YesNo 4 Shows Yes and No buttons.

RetryCancel 5 Shows Retry and Cancel buttons.

Critical 16 Shows Critical Message icon.

Page 11 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

MsgBox constants.

Constant Value Description

Question 32 Shows Warning Query icon.

Exclamation 48 Shows Warning Message icon.

Information 64 Shows Information Message icon.

DefaultButton1 0 First button is default.

DefaultButton2 256 Second button is default.

DefaultButton3 512 Third button is default.

ApplicationModal 0 Application modal, which means the user must respond to the

message box before continuing work in the current

application.

SystemModal 4096 System modal, which means all applications are unavailable

until the user dismisses the message box.

MsgBoxSetForeground 65536 Specifies the message box window as the foreground window.

MsgBoxRight 524288 Text will be right-aligned.

MsgBoxRtlReading 1048576 Specifies text should appear as right-to-left on RTL systems

such as Hebrew and Arabic.

Example:
Private Sub Button1_Click

 Dim Result As Integer

 Result = MsgBox("This is a message box!", MsgBoxStyle.OKCancel +

 MsgBoxStyle.Information + MsgBoxStyle.SystemModal, "Message Box")

 End If

End Sub

InputBox Function

User can use the InputBox function to get a string of text from the user.

Syntax : InputBox(Prompt [, Title [, DefaultResponseg[,XPos [, YPos]]]])

 Prompt— A string expression displayed as the message in the dialog box. The maximum

length is about 1,024 characters (depending on the width of the characters used).

Page 12 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

 Title— String expression displayed in the title bar of the dialog box. Note that if you omit

Title, the application name is placed in the title bar.

 DefaultResponse— A string expression displayed in the text box as the default response if

no other input is provided. Note that if you omit DefaultResponse, the displayed text box is

empty.

 XPos— The distance in pixels of the left edge of the dialog box from the left edge of the

screen. Note that if you omit XPos, the dialog box is centered horizontally.

 YPos— The distance in pixels of the upper edge of the dialog box from the top of the screen.

Note that if you omit YPos, the dialog box is positioned vertically about one-third of the way

down the screen.

 Input boxes let you display a prompt and read a line of text typed by the user, and the

InputBox function returns the string result.

Example:

Private Sub Button3_Click

 Dim Result As String

 Result = InputBox("Enter your text!")

 TextBox1.Text = Result

End Sub

Page 13 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Function Statement:

Declares the name, parameters, and code that define a Function procedure.

Syntax:

[Public | Private] Function name [(arglist)] [As returntype]

[statements]

[name = expression]

[Exit Function]

[statements]

[name = expression]

End Function

 name : Required. Name of the procedure.

 Parameterlist: Optional. List of local variable names representing the parameters of this

procedure.

 returntype : Required if Option Strict is On. Data type of the value returned by this

procedure.

 Specifies the parameters a procedure expects when it is called. Multiple parameters are

separated by commas. The following is the syntax for one parameter.

[Optional] [{ ByVal | ByRef }] parametername[()] [As parametertype] [= defaultvalue]

 Optional : Optional. Specifies that this parameter is not required when the procedure is

called.

 ByVal : Optional. Specifies that the procedure cannot replace or reassign the variable

element underlying the corresponding argument in the calling code.

 ByRef : Optional. Specifies that the procedure can modify the underlying variable element in

the calling code the same way the calling code itself can.

 parametername : Required. Name of the local variable representing the parameter.

Page 14 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

 parametertype : Required if Option Strict is On. Data type of the local variable representing

the parameter.

 defaultvalue : Required for Optional parameters. Any constant or constant expression that

evaluates to the data type of the parameter. If the type is Object, or a class, interface, array,

or structure, the default value can only be Nothing.

Example:

Private Function res1(ByVal n1 As Double) As Double

 Return (n1 * 3.14)

End Function

Private Sub butOk_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles butOk.Click

 ans = res1(Val(Me.txtN1.Text))

 MsgBox("Result is:" & ans)

End Sub

About SDI

 Most applications in Windows 95 or later use a Single Document Interface. Each
window of the application holds a single document, so if the user wants to open more
documents with that application, he must open a new window. also the default mode
when building an application with VB.Net. An example of an SDI application is
Windows Notepad.

Advantages of SDI

 An SDI interface works very well with multiple monitors and multiple virtual
desktops. It also allows users to switch between multiple open documents using the
native Windows taskbar and task manager, rather than through special code that must
be written into your application.

About MDI

 Multiple Document Interfaces were more popular in versions of Windows prior to
Windows 95. With an MDI, each window within an application holds multiple
documents, usually in sub-windows. Each time the user wants to open a new
document, rather than opening a new window, the document opens within the existing
window and shares it with all other open documents. An example of an MDI
application is a tabbed Web browser like Firefox, where users have an option to open
documents in multiple tabs within the same window.

Page 15 of 16

US05CCSC03 Visual Programming through VB .NET
UNIT 2: Conditions, Loops and Windows Forms

Advantages of MDI

 MDI applications can often handle multiple documents more readily than SDI
programs. For example, many MDI text editors allow the user to open multiple text
files side by side in the same window, making it easy to compare and look up
information from a second document while working on the first.

Page 16 of 16

	Select Case statement:
	With Statement
	Do Loop:
	The Do loop keeps executing its enclosed statements while or until condition is true. You can also terminate a Do loop at any time with an Exit Do statement. The Do loop has two versions; you can either evaluate a condition at the beginning:
	For Each…Next Loop
	While Loop
	About SDI
	Advantages of SDI
	About MDI
	Advantages of MDI

