T.Y.B.Sc.: Semester - V

US05CMTH22(T)

Theory Of Real Functions

[Syllabus effective from June, 2020]

Study Material Prepared by:
Mr. Rajesh P. Solanki
Department of Mathematics and Statistics
V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

US05CMTH22(T)- UNIT: II

1. Increasing Function at a point

Increasing Function at a point

Let f be a function defined in some neighbourhood of a number c. If there is some $\delta > 0$ such that

$$f(x) \le f(c), \ \forall \ x \in (c - \delta, c)$$

and

$$f(c) \leqslant f(x), \ \forall \ x \in (c, c + \delta)$$

Figure 1: Increasing Function at a point c

then f is said to be an Increasing function at c.

2. Strictly Increasing Function at a point

Strictly Increasing Function at a point

Let f be a function defined in some neighbourhood of a number c. If there is some $\delta > 0$ such that

$$f(x) < f(c), \ \forall \ x \in \ (c - \delta, c)$$

and

$$f(c) < f(x), \ \forall \ x \in \ (c, c + \delta)$$

then f is said to be a Strictly Increasing function at c.

3. Decreasing Function at a point

Decreasing Function at a point

Let f be a function defined in some neighbourhood of a number c. If there is some $\delta > 0$ such that

$$f(x) \geqslant f(c), \ \forall \ x \in (c - \delta, c)$$

and

$$f(c) \geqslant f(x), \ \forall \ x \in (c, c + \delta)$$

Figure 2: Decreasing Function at a point c

then f is said to be a Decreasing function at c.

4. Strictly Decreasing Function at a point

Strictly Decreasing Function at a point

Let f be a function defined in some neighbourhood of a number c. If there is some $\delta > 0$ such that

$$f(x) > f(c), \ \forall \ x \in \ (c - \delta, c)$$

and

$$f(c) > f(x), \ \forall \ x \in \ (c, c + \delta)$$

then f is said to be a Strictly Decreasing function at c.

5. Increasing Function in an interval.

Increasing Function in an interval

Let f be a function defined on an interval [a, b]. If

$$f(x_1) \leqslant f(x_2), \ \forall \ x_1 \leqslant x_2, \quad \text{where} \ \ x_1, x_2 \in [a, b]$$

then f is said to be an Increasing function on [a, b].

6. Strictly Increasing Function in an interval.

Strictly Increasing Function in an interval

Let f be a function defined on an interval [a, b]. If

$$f(x_1) < f(x_2), \ \forall \ x_1 < x_2, \ \text{where} \ x_1, x_2 \in [a, b]$$

then f is said to be a Strictly Increasing function on [a, b].

7. Decreasing Function in an interval.

Decreasing Function in an interval

Let f be a function defined on an interval [a, b]. If

$$f(x_1) \geqslant f(x_2), \ \forall \ x_1 \leqslant x_2 \quad \text{where} \ x_1, x_2 \in [a, b]$$

then f is said to be a Decreasing function on [a, b].

8. Strictly Decreasing Function in an interval.

Strictly Decreasing Function in an interval

Let f be a function defined on an interval [a, b]. If

$$f(x_1) > f(x_2), \ \forall \ x_1 < x_2, \ \text{where} \ x_1, x_2 \in [a, b]$$

then f is said to be an Strictly Decreasing function on [a, b].

9. If f'(c) > 0, then prove that f is an increasing function at point x = c.

Proof:

Let f be a function defined on [a, b] such that it is derivable at a point $c \in (a, b)$.

We get the derivative by

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$$

For any given $\epsilon > 0$ there exists some $\delta > 0$ such that

$$\left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < \epsilon \text{ whenever } 0 < |x - c| < \delta$$

This implies that,

$$f'(c) - \epsilon < \frac{f(x) - f(c)}{x - c} < f'(c) + \epsilon$$
 whenever $x \in (c - \delta, c + \delta), x \neq c$ --- (1)

Now, suppose f'(c) > 0.

Then we can select some sufficiently small $\epsilon > 0$ such that $0 < f'(c) - \epsilon$.

Figure 3: Selecting $\epsilon > 0$ such that $0 < f'(c) - \epsilon$

For this choice of $\epsilon > 0$ there must be some $\delta > 0$ satisfying (1).

As $0 < f'(c) - \epsilon$, from (1) it follows that,

$$0 < \frac{f(x) - f(c)}{x - c}$$
 whenever $x \in (c - \delta, c + \delta), x \neq c$ --- (2)

If $x \in (c - \delta, c)$ then x - c < 0. So to have $0 < \frac{f(x) - f(c)}{x - c}$ we must have

$$f(x) - f(c) < 0$$
 whenever $x \in (c - \delta, c)$

This implies that,

$$f(x) < f(c)$$
 whenever $x \in (c - \delta, c)$ --- (3)

Also, if $x \in (c, c + \delta)$ then x - c > 0. So to have $0 < \frac{f(x) - f(c)}{x - c}$ we must have

$$f(x) - f(c) > 0$$
 whenever $x \in (c, c + \delta)$

This implies that,

$$f(c) < f(x)$$
 whenever $x \in (c, c + \delta)$ --- (4)

From (3) and (4) it follows that, f is increasing at c

10. If f'(c) < 0, then prove that f is a decreasing function at point x = c.

Proof:

Let f be a function defined on [a, b] such that it is derivable at a point $c \in (a, b)$.

We get the derivative by

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$$

For any given $\epsilon > 0$ there exists some $\delta > 0$ such that

$$\left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < \epsilon \text{ whenever } 0 < |x - c| < \delta$$

This implies that,

$$f'(c) - \epsilon < \frac{f(x) - f(c)}{x - c} < f'(c) + \epsilon$$
 whenever $x \in (c - \delta, c + \delta), x \neq c$ --- (1)

Now, suppose f'(c) < 0.

Then we can select some sufficiently small $\epsilon > 0$ such that $f'(c) + \epsilon < 0$.

Figure 4: Selecting $\epsilon > 0$ such that $f'(c) + \epsilon < 0$

For this choice of $\epsilon > 0$ there must be some $\delta > 0$ satisfying (1).

As $f'(c) + \epsilon < 0$, from (1) it follows that,

$$\frac{f(x) - f(c)}{x - c} < 0 \text{ whenever } x \in (c - \delta, c + \delta), \ x \neq c \quad --- (2)$$

If $x \in (c - \delta, c)$ then x - c < 0. So to have $\frac{f(x) - f(c)}{x - c} < 0$ we must have

$$f(x) - f(c) > 0$$
 whenever $x \in (c - \delta, c)$

This implies that,

$$f(x) > f(c)$$
 whenever $x \in (c - \delta, c)$ --- (3)

Also, if $x \in (c, c + \delta)$ then x - c > 0. So to have $\frac{f(x) - f(c)}{x - c} < 0$ we must have

$$f(x) - f(c) < 0$$
 whenever $x \in (c, c + \delta)$

This implies that,

$$f(x) < f(c)$$
 whenever $x \in (c, c + \delta)$ --- (4)

From (3) and (4) it follows that, f is decreasing at c

11. Show that
$$\log(1+x)$$
 lies between $x-\frac{x^2}{2}$ and $x-\frac{x^2}{2(1+x)}$, $\forall x>0$

Solution:

We have to prove that $x-\frac{x^2}{2}<\log(1+x)< x-\frac{x^2}{2(1+x)},\ \forall x>0$ First define, $f(x)=\log(1+x)-\left(x-\frac{x^2}{2}\right)$ Here,

$$f'(x) = \frac{1}{1+x} - (1-x)$$

$$= \frac{1 - (1-x^2)}{1+x}$$

$$= \frac{x^2}{x+1}$$
> 0, \forall x > 0

Therefore, f is strictly increasing for all x > 0Therefore,

$$\begin{split} 0 < x \Rightarrow f(0) < f(x) \\ \Rightarrow \log(1+0) - \left(0 - \frac{0^2}{2}\right) < \log(1+x) - \left(x - \frac{x^2}{2}\right) \\ \Rightarrow 0 < \log(1+x) - \left(x - \frac{x^2}{2}\right) \\ \Rightarrow x - \frac{x^2}{2} < \log(1+x) - - - - (i) \end{split}$$

Next, define,
$$g(x) = \left(x - \frac{x^2}{2(1+x)}\right) - \log(1+x)$$

Here,

$$g'(x) = 1 - \frac{2(1+x)(2x) - x^{2}(2)}{4(x+1)^{2}} - \frac{1}{1+x}$$

$$= \frac{x}{1+x} - \frac{4x + 4x^{2} - 2x^{2}}{4(x+1)^{2}}$$

$$= \frac{x}{1+x} - \frac{2x + x^{2}}{2(x+1)^{2}}$$

$$= \frac{2x(x+1) - (2x + x^{2})}{2(x+1)^{2}}$$

$$= \frac{x^{2}}{2(x+1)^{2}}$$

$$> 0, \ \forall \ x > 0$$

Therefore, g is strictly increasing for all x > 0Therefore,

$$0 < x \Rightarrow g(0) < g(x)$$

$$\Rightarrow \left(0 - \frac{0^2}{2(0+1)}\right) - \log(1+0) < \left(x - \frac{x^2}{2(x+1)}\right) - \log(1+x)$$

$$\Rightarrow 0 < \left(x - \frac{x^2}{2(x+1)}\right) - \log(1+x)$$

$$\Rightarrow \log(1+x) < x - \frac{x^2}{2(x+1)} - - - - (ii)$$

From (i)and (ii) it follows that $x - \frac{x^2}{2} < \log(1+x) < x - \frac{x^2}{2(1+x)}, \ \forall x > 0$

12. Prove that,
$$\frac{x}{1+x} < \log(1+x) < x$$
 for all $x > 0$.

Solution:

$$f'(x) = \frac{1}{1+x} - \frac{(1+x)(1) - x(1)}{(x+1)^2}$$

$$= \frac{1}{1+x} - \frac{1}{(x+1)^2}$$

$$= \frac{(1+x) - 1}{(x+1)^2}$$

$$= \frac{x}{(x+1)^2}$$

$$> 0, \forall x > 0$$

Therefore, f is strictly increasing for all x > 0Therefore,

$$0 < x \Rightarrow f(0) < f(x)$$

$$\Rightarrow \log(1+0) - \frac{0}{1+0} < \log(1+x) - \frac{x}{1+x}$$

$$\Rightarrow 0 < \log(1+x) - \frac{x}{1+x}$$

$$\Rightarrow \frac{x}{1+x} < \log(1+x) - \dots - \dots - (i)$$

Again define $g(x) = x - \log(1 + x)$ Here,

$$g'(x) = 1 - \frac{1}{x+1}$$

$$= \frac{(x+1)-1}{x+1}$$

$$= \frac{x}{x+1}$$

$$> 0, \forall x > 0$$

Therefore, g is strictly increasing for all 0 < xTherefore,

$$0 < x \Rightarrow g(0) < g(x)$$

$$\Rightarrow 0 - \log(1+0) < x - \log(1+x)$$

$$\Rightarrow 0 < x - \log(1+x)$$

$$\Rightarrow \log(x+1) < x - - - (ii)$$

From (i)and (ii) it follows that $\frac{x}{1+x} < \log(1+x) < x$ for all x > 0

13. State and prove the Darboux's theorem for derivable function.

Darboux's Theorem:

If a function f is derivable on a closed interval [a, b] such that f'(a) and f'(b) are of opposite signs then there exists at least one point c between a and b such that f'(c) = 0

Proof:

Let us suppose f'(a) < 0 and f'(b) > 0

Since f'(a) < 0, the function f is decreasing at a in [a, b]

Therefore, there is some $\delta_1 > 0$ such that

$$f(a) > f(x), \forall x \in (a, a + \delta_1)$$
 --- (1)

Also, as 0 < f'(b), the function f is increasing at b in [a, b]

Therefore, there is some $\delta_2 > 0$ such that

$$f(x) < f(b), \forall x \in (b - \delta_2, b)$$
 --- (2)

Figure 5: f must have infimum at an interior point c

Now, as f is derivable on [a, b] it is continuous on the interval. Since f is continuous on the closed interval [a, b] it is bounded and attains its bounds.

Suppose m is the infimum of f on [a, b]. Then there must be some c in [a, b] such that

$$f(c) = m$$

As m is the infimum of f on [a, b], from (1) and (2) it is follows that $f(a) \neq m$ and $f(b) \neq m$

But then, $f(a) \neq f(c)$ and $f(b) \neq f(c)$.

This implies that $a \neq c$ and $b \neq c$. Therefore

$$c \in (a, b)$$

Thus, c is an interior point of [a, b].

Next we show that $f'(c) \not< 0$ and $f'(c) \not> 0$

If possible suppose, f'(c) < 0.

Then f is decreasing at c. Therefore there exists some $\delta_3 > 0$ such that

$$f(c) > f(x), \ \forall \ x \in (c, c + \delta_3)$$

But then we have,

$$m > f(x), \ \forall \ x \in (c, c + \delta_3)$$

which is not possible as m is the infimum of f in [a, b]. Therefore we must have

$$f'(c) \not< 0$$

Again, if possible suppose, f'(c) > 0.

Then f is increasing at c. Therefore there exists some $\delta_4 > 0$ such that

$$f(c) > f(x), \ \forall \ x \in (c - \delta_4, c)$$

But then we have,

$$m > f(x), \ \forall \ x \in (c - \delta_4, c)$$

which is not possible as m is the infimum of f in [a, b]. Therefore we must have

$$f'(c) \not> 0$$

As R is an ordered field, by the low of Trichotomy we must have,

$$f'(c) = 0$$

14. State and prove Rolle's theorem

Proof:

If a function f is continuous on [a, b] then it is bounded on [a, b] and attains its bounds at some points in [a, b]. If m and M are the infimum and the supremum of f in [a, b] then for some points c and d in [a, b] we have,

$$f(c) = m$$
 and $f(d) = M$

If m = M then f is a constant function on [a, b]. In that case for every $c \in [a, b]$ we get f(c) = 0.

Now, if $m \neq M$ then any given number must be different from at least one of m and M.

Therefore, we have either $f(a) \neq m$ or $f(a) \neq M$ Suppose, $f(a) \neq m$.

Therefore,

$$f(a) \neq m \Rightarrow f(a) \neq f(c) \Rightarrow a \neq c$$

and

$$f(b) \neq m \Rightarrow f(b) \neq f(c) \Rightarrow b \neq c$$

Hence

$$c\in(a,b)$$

Finally, we show that $f(c) \neq 0$ and $f(c) \geq 0$.

If possible, suppose f'(c) < 0. Then f is a decreasing function at c. Therefore there exists some $\delta_1 > 0$ such that

$$f(c) > f(x), \quad \forall \quad x \in (c, c + \delta_1)$$

But then

$$m > f(x), \forall x \in (c, c + \delta_1)$$

This is not possible as m is the infimum of f on [a, b]

Therefore

$$f(c) \not< 0$$

Again, if possible, suppose f'(c) > 0. Then f is an increasing function at c. Therefore there exists some $\delta_2 > 0$ such that

$$f(c) > f(x), \forall x \in (c - \delta_2, c)$$

But then

$$m > f(x), \quad \forall \quad x \in (c - \delta_2, c)$$

This is not possible as m is the infimum of f on [a, b]

Therefore

$$f(c) \not> 0$$

As R is an ordered field, by the low of Trichotomy we must have,

$$f(c) = 0$$

15. Discuss Geometric Meaning of Rolle's theorem.

Geometric Interpretation of Rolle's Theorem

The Rolle's theorem states the following,

If a function f defined on [a, b] is

- (i) continuous on [a, b]
- (ii) differentiable on (a, b) and
- (iii) f(a) = f(b)

then there exists at least one real number c between a and b such that f'(c) = 0

Geometrically, it can be said that if a function f is continuous on [a, b] and derivable on (a, b) such that the ordinates f(a) and f(b) at the end points of [a, b] are equal then there is at least point $c \in (a, b)$ such that the the tangent at the point (c, f(c)) on the graph of y = f(x) is parallel to the X--axis. In other words the slope of the tangent at (c, f(c)) is

16. Discuss Algebraic Meaning of Rolle's theorem.

Algebraic Interpretation of Rolle's Theorem

The Rolle's theorem states the following,

If a function f defined on [a, b] is

- (i) continuous on [a, b]
- (ii) differentiable on (a, b) and
- (iii) f(a) = f(b)

then there exists at least one real number c between a and b such that f'(c) = 0

Algebraically, it can be said that there is at least **ROOT** of the equation f'(x) = 0 in (a, b). In other words the equation f'(x) = 0 has at least one zero in (a, b).

17. State and prove Lagrange's Mean Value theorem

Proof:

Define a function ϕ on [a, b] as follows,

$$\phi(x) = f(x) + Ax$$

where A is to be determined such that $\phi(a) = \phi(b)$. In that case, we must have,

$$f(a) + Aa = f(b) + Ab$$

$$\therefore A(a-b) = f(b) - f(a)$$

$$\therefore A = -\frac{f(b) - f(a)}{b-a}$$

Now $\phi(x)$ is a sum of two functions, namely f(x) and Ax, which are continuous on [a, b] and derivable on (a, b). Therefore, we have the following for $\phi(x)$,

- (1) $\phi(x)$ is continuous on [a, b]
- (2) $\phi(x)$ is derivable on (a, b)
- (3) $\phi(a) = \phi(b)$

Therefore, by the Rolle's theorem there exists some $c \in (a,b)$ such that

$$\phi'(c)=0$$

Since

$$\phi'(x) = f'(x) + A$$

we get,

$$f'(c) + A = 0$$

Hence,

$$\mathbf{f}'(\mathbf{c}) = \frac{\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})}{\mathbf{b} - \mathbf{a}}$$

f'(c) = -A

18. Discuss Geometric Meaning of Lagrange's theorem

Geometric Interpretation of Lagrange's Theorem

The Lagrange's theorem states the following,

- (1) continuous on [a, b] and
- (2) differentiable on (a, b)

then there exists at least one real number c between a and b such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Geometrically, it can be said that if a function f is continuous on [a, b] and derivable on (a, b) then there is at least one point $c \in (a, b)$ such that the thrtangent at the point (c, f(c)) on the graph of y = f(x) is parallel to the chord \overline{AB} joining the points A(a, f(a)) and B(b, f(b)).

19. State and prove Cauchy's Mean Value theorem

Proof:

Define a function ϕ on [a, b] as follows,

$$\phi(x) = f(x) + Ag(x)$$

where A is to be determined such that $\phi(a) = \phi(b)$. In that case, we must have,

$$f(a) + Ag(a) = f(b) + Ag(b)$$

$$\therefore A(g(a) - g(b)) = f(b) - f(a)$$

$$\therefore A = -\frac{f(b) - f(a)}{g(b) - g(a)}$$

Now $\phi(x)$ is a sum of two functions, namely f(x) and Ag(x), which are continuous on [a, b] and derivable on (a, b). Therefore, we have the following for $\phi(x)$,

- (1) $\phi(x)$ is continuous on [a, b]
- (2) $\phi(x)$ is derivable on (a, b)
- (3) $\phi(a) = \phi(b)$

Therefore, by the Rolle's theorem there exists some $c \in (a, b)$ such that

$$\phi'(c)=0$$

Since

$$\phi'(x) = f'(x) + Ag'(x)$$

we get,

$$f'(c) + Ag'(c) = 0$$

$$\therefore f'(c) = -Ag'(c)$$

$$\therefore \frac{f'(c)}{g'(c)} = -A$$

Hence,

$$\frac{\mathbf{f}'(\mathbf{c})}{\mathbf{g}'(\mathbf{c})} = \frac{\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})}{\mathbf{g}(\mathbf{b}) - \mathbf{g}(\mathbf{a})}$$

20. If a function f(x) satisfies the conditions of the Lagrange's Mean Value Theorem and f'(x) = 0, $\forall x \in [a, b]$ then prove that f is constant on [a, b]

Proof:

Function f(x) satisfies the conditions of the Lagrange's Mean Value Theorem on [a, b].

Now, for any $x_1, x_2 \in [a, b]$ such that $x_1 < x_2$ we have

$$[x_1, x_2] \subset [a, b]$$

Therefore f(x) also satisfies the conditions of Lagrange's Mean Value Theorem on $[x_1, x_2]$.

Therefore, there exists some $c \in (x_1, x_2)$ such that,

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad --- (1)$$

As it is given that f'(x) = 0, $\forall x \in [a, b]$, we have f'(c) = 0. Therefore, from (1) we get,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$$

$$\therefore f(x_2) - f(x_1) = 0$$

$$\therefore f(x_2) = f(x_1)$$

As choice of $x_1, x_2 \in [a, b]$ is arbitrary, it follows that f assumes same value for all $x \in [a, b]$.

Hence, f is constant on [a, b].

21. If two functions have equal derivatives at all points then show that they differ only by a constant

Proof:

Let f and g be two functions defined on (a, b) such that

$$f'(x) = g'(x) \ \forall x \in (a, b)$$

Now define,

$$h(x) = f(x) - g(x), \ \forall x \in (a,b)$$

As f and g both are derivable on (a, b), h is also derivable on (a, b) and

$$h'(x) = f'(x) - g'(x) \quad \forall x \in (a, b)$$

 $h'(x) = 0 \quad \forall x \in (a, b)$

Hence h is a constant function on (a, b).

Therefore, for some constant k,

$$h(x) = k, \quad \forall x \in (a, b)$$

$$\therefore f(x) - g(x) = k, \ \forall x \in (a, b)$$

Hence, f(x) and g(x) differ only by a constant.

22. If f is continuous on [a, b], derivable on (a, b) and f'(x) > 0, $\forall x \in (a, b)$ then prove that f is strictly increasing function on [a, b]

Proof:

Here, function f is continuous on [a, b] and derivable on (a, b).

Therefore f stisfies all the conditions for Lagrange's Mean Value Theorem.

Moreover it is given that f'(x) > 0, $\forall x \in (a, b)$

Now, for any $x_1, x_2 \in [a, b]$ such that $x_1 < x_2$ we have

$$[x_1, x_2] \subset [a, b]$$

Therefore f(x) also satisfies the conditions of Lagrange's Mean Value Theorem on $[x_1, x_2]$.

Therefore, there exists some $c \in (x_1, x_2)$ such that,

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad --- (1)$$

As it is given that f'(x) > 0, $\forall x \in [a, b]$, we have f'(c) > 0. Therefore, from (1) we get,

$$0 < \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\therefore \quad 0 < f(x_2) - f(x_1)$$

$$\therefore \quad f(x_1) < f(x_2)$$

Thus we have,

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \text{ for } x_1, x_2 \in [a, b]$$

Hence, f is strictly increasing on [a, b].

23. Show that
$$\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$$
, for some θ where $0 < \alpha < \theta < \beta < \frac{\pi}{2}$

Solution:

For $0 < \alpha < \beta < \frac{\pi}{2}$, define,

$$f(x) = \sin x ext{ and } g(x) = \cos x ext{ for } x \in [lpha, eta]$$

As sin and cos both are continuous on $[0, \frac{\pi}{2}]$ and derivable on $(0, \frac{\pi}{2})$ they are also continuous on $[\alpha, \beta]$ and derivable on (α, β) .

Also,
$$g'(x) = -\sin x \neq 0$$
, $\forall x \in (\alpha, \beta)$.

So, the Cauchy's Mean Value theorem is applicable. Therefore there is some $\theta \in (\alpha, \beta)$ such that,

$$\frac{f'(\theta)}{g'(\theta)} = \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)}$$

$$\therefore \frac{\cos \theta}{-\sin \theta} = \frac{\sin \beta - \sin \alpha}{\cos \beta - \cos \alpha}$$

$$\therefore \frac{\cos \theta}{\sin \theta} = \frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha}$$
$$\therefore \frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$$

24. A twice differentiable function f is such that f(a) = f(b) = 0 and f(c) > 0 for a < c < b. Prove that there is all least one value ξ between a and b for which $f''(\xi) < 0$.

Solution:

Here, f is a twice differentiable function on (a, b) such that f(a) = f(b) = 0

Therefore, f'' exists on (a, b), hence f' also exists on (a, b).

Also, at a point $c \in (a, b)$ it is given that f(c) > 0.

Applying Lagrange's Mean Value Theorem on [a,c] and [c,b] we get some $\xi_1 \in (a,c)$ and $\xi_2 \in (c,b)$ such that

$$f'(\xi_1) = rac{f(c) - f(a)}{c - a}$$
 and $f'(\xi_2) = rac{f(b) - f(c)}{b - c}$

As, f(a) = f(b) = 0, we get

$$f'(\xi_1) = \frac{f(c)}{c-a}$$
 and $f'(\xi_2) = -\frac{f(c)}{b-c}$ --- (1)

Also, f'(x) is continuous on $[\xi_1, \xi_2]$. Therefore, again applying Lagrange's Mean Value Theorem to f'(x) on $[\xi_1, \xi_2]$ we get some $\xi \in [\xi_1, \xi_2]$ such that,

$$f''(\xi) = \frac{f'(\xi_2) - f(\xi_1)}{\xi_2 - \xi_1}$$

Substituting for $f'(\xi_1)$ and $f'(\xi_2)$ from (1), we get,

$$f''(\xi) = \frac{-\frac{f(c)}{b-c} - \frac{f(c)}{c-a}}{\xi_2 - \xi_1}$$

$$= -\frac{f(c)}{\xi_2 - \xi_1} \left[\frac{1}{b-c} + \frac{1}{c-a} \right]$$

$$= -\frac{f(c)}{\xi_2 - \xi_1} \left[\frac{(c-a) + (b-c)}{(b-c)(c-a)} \right]$$

$$= -\frac{f(c)}{\xi_2 - \xi_1} \left[\frac{b-a}{(b-c)(c-a)} \right]$$

Since, f(c) > 0 and all the numbers in each of the brackets on the RHS are positive, we have

$$f''(\xi) < 0$$

25. State and prove Taylor's theorem.

Taylor's Theorem:

If a function f defined on [a, a + h] is such that

(i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [a, a+h] and

(ii) the n^{th} derivative $f^{(n)}$ exists on (a, a + h), then there exists at least one real number θ between 0 and 1 such that

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(a+\theta h)$$

where p is a possitive integer.

Proof:

As $f^{(n-1)}$ is continuous on [a, a+h], it implies that

$$f, f', f'', \dots, f^{(n-1)}$$
 all exist and are continuous on $[a, a+h]$

Define,

$$\phi(x) = f(x) + \frac{((a+h)-x)}{1!}f'(x) + \frac{((a+h)-x)^2}{2!}f''(x) + \frac{((a+h)-x)^3}{3!}f'''(x) + \cdots + \frac{((a+h)-x)^{n-1}}{(n-1)!}f^{(n-1)}(x) + A(a+h-x)^p$$

Where A is a constant to be determined such that

$$\phi(a+h)=\phi(a)$$

For this we must have,

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + Ah^p - \dots$$
 (1)

Now, $f, f', f'', \dots, f^{(n-1)}$ are continuous on [a, a+h] implies that

$$\phi(x)$$
 is continuous on $[a, a+h]$ - - - (2)

Moreover, $f^{(n)}$ exists on (a, a + h) implies that $f, f', f'', \dots, f^{(n-1)}$ are derivable on (a, a + h). Therefore,

$$\phi'(x)$$
 is derivable on $(a, a+h)$ - - - (3)

Also,

$$\phi(a+h)=\phi(a)---(4)$$

From (2),(3) and (4) it follows that $\phi(x)$ satisfies all the conditions of Rolle's theorem and hence there exists some real number $\theta \in (0,1)$ such that

$$\phi'(a+\theta h)=0$$

We have,

$$\phi'(x) = rac{(a+h-x)^{n-1}}{(n-1)!} f^{(n)}(x) - Ap(a+h-x)^{p-1}$$

Therefore, $\phi'(a + \theta h) = 0$ implies that

$$\frac{[a+h-(a+\theta h)]^{n-1}}{(n-1)!}f^{n}(a+\theta h) - Ap[a+h-(a+\theta h)]^{p-1} = 0$$

$$\therefore \frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h) - Aph^{p-1}(1-\theta)^{p-1} = 0$$

$$\therefore \frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h) - Aph^{p-1}(1-\theta)^{p-1} = 0$$

$$\therefore Aph^{p-1}((1-\theta)^{p-1}) = \frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h)$$

$$\therefore A = \frac{h^{n-p}(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(a+\theta h)$$

Substituting for A in (1), we get

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(a+\theta h)$$

, where $\theta \in (0,1)$ and p is a postitive number.

26. Forms of remainders in Taylor's theorem.

(1) Schlömilch and Röche form of remainder

$$R_n = \frac{h^n (1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(a+\theta h)$$

(2) Cauchy's form of remainder

$$R_n = \frac{h^n (1 - \theta)^{n-1}}{(n-1)!} f^{(n)}(a + \theta h)$$

which can be obtained by taking p=1 in Schlömilch and Röche form of remainder.

(3) Lagrange's form of remainder

$$R_n = \frac{h^n}{n!} f^{(n)}(a + \theta h)$$

which can be obtained by taking p = n in Schlömilch and Röche form of remainder.

27. Prove Taylor's theorem with Cauchy's form of remainder by taking the function

$$\phi(x) = f(x) + \frac{(a+h-x)}{1!}f'(x) + \frac{(a+h-x)^2}{2!}f''(x) + \dots + \frac{(a+h-x)^{n-1}}{(n-1)!}f^{(n-1)}(x) + A(a+h-x)$$

Proof:

Let f be a function defined on [a, a + h] is such that

- (i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [a, a+h] and
- (ii) the n^{th} derivative $f^{(n)}$ exists on (a, a + h)

As $f^{(n-1)}$ is continuous on [a, a+h], it implies that

$$f, f', f'', \dots, f^{(n-1)}$$
 all exist and are continuous on $[a, a+h]$

Define,

$$\phi(x) = f(x) + \frac{((a+h)-x)}{1!}f'(x) + \frac{((a+h)-x)^2}{2!}f''(x) + \frac{((a+h)-x)^3}{3!}f'''(x) + \cdots + \frac{((a+h)-x)^{n-1}}{(n-1)!}f^{(n-1)}(x) + A(a+h-x)$$

Where A is a constant to be determined such that

$$\phi(a+h)=\phi(a)$$

For this we must have,

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + Ah - \dots$$
 (1)

Now, $f, f', f'', \dots, f^{(n-1)}$ are continuous on [a, a+h] implies that

$$\phi(x)$$
 is continuous on $[a, a+h]$ - - - (2)

Moreover, $f^{(n)}$ exists on (a, a + h) implies that $f, f', f'', \dots, f^{(n-1)}$ are derivable on (a, a + h). Therefore,

$$\phi'(x)$$
 is derivable on $(a, a+h)$ - - - (3)

Also,

$$\phi(a+h)=\phi(a)---(4)$$

From (2),(3) and (4) it follows that $\phi(x)$ satisfies all the conditions of Rolle's theorem and hence there exists some real number $\theta \in (0,1)$ such that

$$\phi'(a+\theta h)=0$$

We have,

$$\phi'(x) = \frac{(a+h-x)^{n-1}}{(n-1)!} f^{(n)}(x) - A$$

Therefore, $\phi'(a + \theta h) = 0$ implies that

$$\frac{[a+h-(a+\theta h)]^{n-1}}{(n-1)!}f^{(n)}(a+\theta h) - A = 0$$

$$\therefore \frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h) - A = 0$$

$$\therefore A = \frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h)$$

Substituting for A in (1), we get

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h)$$

Where the last term in the expansion is the Cauchy's form of Remainder.

28. State and prove Generalised Mean Value theorem.

OR

Deduce Taylor's theorem from Mean Value Theorem.

Generalised Mean Value theorem:

Let f be a function defined on [a, a+h] such that

- (i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [a, a+h] and
- (ii) the n^{th} derivative $f^{(n)}$ exists on (a, a + h),

then there exists at least one real number θ between 0 and 1 such that

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h)$$

Proof:

As $f^{(n-1)}$ is continuous on [a, a+h], it implies that

$$f, f', f'', \dots, f^{(n-1)}$$
 all exist and are continuous on $[a, a+h]$

Define,

$$\phi(x) = f(x) + \frac{((a+h)-x)}{1!}f'(x) + \frac{((a+h)-x)^2}{2!}f''(x) + \frac{((a+h)-x)^3}{3!}f'''(x) + \cdots + \frac{((a+h)-x)^{n-1}}{(n-1)!}f^{(n-1)}(x)$$

As $f, f', f'', \ldots, f^{(n-1)}$ are continuous on [a, a+h] implies that

$$\phi(x)$$
 is continuous on $[a, a+h]$ - - - (1)

Moreover, $f^{(n)}$ exists on (a, a + h) implies that $f, f', f'', \dots, f^{(n-1)}$ are derivable on (a, a + h). Therefore,

$$\phi'(x)$$
 is derivable on $(a, a+h)$ - - - (2)

Therefore by Lagrange's Mean Value Theorem there exists some $\theta \in (0,1)$ such that

$$\phi(a+h) = \phi(a) + h\phi'(a+\theta h)$$

Therefore,

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \cdots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + h\phi'(a+\theta h) - \cdots (3)$$

As

$$\phi'(x) = \frac{(a+h-x)^{n-1}}{(n-1)!} f^{(n)}(x)$$

we have,

$$\phi'(a+\theta h) = \frac{[a+h-(a+\theta h)]^{n-1}}{(n-1)!} f^{(n)}(a+\theta h)$$

$$\therefore \ \phi'(a+ heta h) = rac{h^{n-1}(1- heta)^{n-1}}{(n-1)!} f^{(n)}(a+ heta h)$$

Substituting in (3) we get,

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(a+\theta h)$$

29. State Maclaurin's theorem and deduce it from Taylor's theorem.

Maclaurin's theorem:

Let f be a function defined on [0, h] such that

- (i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [0,h] and
- (ii) the n^{th} derivative $f^{(n)}$ exists on (0, h),

then for each $x \in (0, h)$ there exists at least one real number $\theta \in (0, 1)$ such that

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots + \frac{x^n(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(\theta x)$$

Proof

 $\overline{\text{As } f^{(n-1)}}$ is continuous on [0,h] and $f^{(n)}$ exists on (0,h) for any $x \in (0,h)$ it implies that $f^{(n-1)}$

is continuous on [0,x] and $f^{(n)}$ exists on (0,x).

Therefore, by Taylor's theorem, for a postive integer p there exists some $\theta \in (0,1)$ such that

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \frac{x^n(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(\theta x)$$

30. Forms of remainders in Maclaurin's theorem.

(1) Schlömilch and Röche form of remainder

$$R_n = \frac{x^n (1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(\theta x)$$

Cauchy's form of remainder

$$R_n = \frac{x^n (1 - \theta)^{n-1}}{(n-1)!} f^{(n)}(\theta x)$$

which can be obtained by taking p=1 in Schlömilch and Röche form of remainder.

(3) Lagrange's form of remainder

$$R_n = \frac{x^n}{n!} f^{(n)}(\theta x)$$

which can be obtained by taking p = n in Schlömilch and Röche form of remainder.

31. Taylor's Series

Taylor's Series

- For a function f defined on [a, a+h] if (i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [a, a+h] and
- (ii) the n^{th} derivative $f^{(n)}$ exists on (a, a + h)

then by Taylor's theorem there is some $\theta \in (0,1)$ such that

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \frac{h^3}{3!}f'''(a) + \cdots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + R_n$$

Where R_n is the Schlömilch and Röche form or Cauchy's from or Lagrange's form of raminder.

If we take

$$S_n == f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a)$$

then we can write,

$$f(a+h) = S_n + R_n \quad --- (1)$$

Suppose f possesses derivative of every order on (a, a + h) and $\lim_{n \to \infty} R_n = 0$. In that case

$$\lim_{n \to \infty} f(a+h) = \lim_{n \to \infty} S_n + \lim_{n \to \infty} R_n$$

Therefore, we get

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \cdots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \cdots$$

The series on the right hand side is called **Taylor's series** for f(x).

By taking a + h = x we can express the series in the following form

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \dots$$

which the **Power Series** expansion of f(x) in powers of (x-a).

32. Maclaurin's Series

Maclaurin Series

For a function f defined on [0, h] if

- (i) the $(n-1)^{th}$ derivative $f^{(n-1)}$ is continuous on [0,h] and
- (ii) the n^{th} derivative $f^{(n)}$ exists on (0, h)

then for every $x \in (0, h)$, by Maclaurin's theorem, there is some $\theta \in (0, 1)$ such that

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

Where R_n is the Schlömilch and Röche form or Cauchy's from or Lagrange's form of raminder.

If we take

$$S_n = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0)$$

then we can write,

$$f(x) = S_n + R_n \quad --- (1)$$

Suppose f possesses derivative of every order on (0,h) and $\lim_{n\to\infty} R_n = 0$. In that case

$$\lim_{n\to\infty} f(x) = \lim_{n\to\infty} S_n + \lim_{n\to\infty} R_n$$

Therefore, we get

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$$

The series on the right hand side is called **Maclaurin's series** for f(x). which the **Power Series** expansion of f(x) in powers of x.

33. Obtain series expansion of e^x .

Answer:

Function $f(x) = e^x$ possesses derivatives of every order for every $x \in R$ and $f^{(n)}(x) = e^x$, $\forall n$. Therefore, the Maclaurin's expansion with remainder R_n is given by

$$f(x) = f(0) + rac{x}{1!}f'(0) + rac{x^2}{2!}f''(0) + \cdots + rac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

In the expansion, if we consider R_n to be the Lagrange's form of remainder then for $\theta \in (0,1)$,

$$R_n = rac{x^n}{n!} f^{(n)}(heta x) = rac{x^n}{n!} e^{ heta x}$$

Here,

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{x^n}{n!} e^{\theta x}$$

$$= \left(\lim_{n \to \infty} \frac{x^n}{n!}\right) e^{\theta x}$$

$$= 0$$

Since $\lim_{n\to\infty} R_n = 0$, the condition for Maclaurin's infinite expansion for f(x) is satisfied. Now,

$$f(0) = f'(0) = f''(0) = f'''(0) = \dots = f^{(n)}(0) = \dots = e^0 = 1$$

As the general form of Maclaurin's expansion is given by,

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(a) + \cdots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \cdots$$

We get the following Maclaurin's infinite series for $f(x) = e^x$,

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

34. Obtain series expansion of $\cos x$.

Answer:

Function $f(x) = \cos x$ possesses derivatives of every order for every $x \in R$ and

$$f^{(n)}(x) = \cos\left(\frac{n\pi}{2} + x\right)$$

. Therefore, the Maclaurin's expansion with remainder \mathcal{R}_n is given by

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

In the expansion, if we consider R_n to be Lagrange's form of remainder then for $\theta \in (0,1)$

$$R_n = rac{x^n}{n!} f^{(n)}(\theta x) = rac{x^n}{n!} \cos\left(rac{n\pi}{2} + \theta x
ight)$$

Therefore

$$|R_n| = \left| rac{x^n}{n!} \cos\left(rac{n\pi}{2} + \theta x
ight)
ight|$$

$$\therefore |R_n| = \left| rac{x^n}{n!}
ight| \left| \cos\left(rac{n\pi}{2} + \theta x
ight)
ight|$$

Since,

$$\left|\cos\left(\frac{n\pi}{2} + \theta x\right)\right| \leqslant 1$$

we get,

$$\therefore |R_n| \leqslant \left| \frac{x^n}{n!} \right|$$

As,

$$\lim_{n\to\infty}\frac{x^n}{n!}=0$$

we conclude that,

$$\lim_{n\to\infty} R_n = 0$$

Therefore, the condition for Maclaurin's infinite expansion for f(x) is satisfied. Now,

$$f(0) = \cos 0 = 1$$

$$f'(0) = -\sin 0 = 0$$

$$f''(0) = -\cos 0 = -1$$

$$f^{(iv)}(0) = \sin 0 = 0$$

$$f^{(v)}(0) = \cos 0 = 1$$

. . .

As the general form of Maclaurin's expansion is given by,

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$$

We get the following Maclaurin's infinite series for $f(x) = \cos x$,

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

35. Obtain series expansion of $\log(1+x)$ for $-1 < x \le 1$.

Answer:

For the function
$$f(x) = \log(1+x)$$
 we have, $f^{(n)}(x) = \frac{(-1)^{(n-1)}(n-1)!}{(1+x)^n}$

Hence, f(x) possesses derivatives of every order for every $-1 < x \le 1$ and they are continuous for |x| < 1. Therefore, the Maclaurin's expansion with remainder R_n is given by

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

In the expansion, if we consider R_n to be Lagrange's form of remainder then for $\theta \in (0,1)$

$$R_n = \frac{x^n}{n!} f^{(n)}(\theta x)$$

$$\therefore R_n = \frac{x^n}{n!} \frac{(-1)^{(n-1)}(n-1)!}{(1+\theta x)^n} = (-1)^{(n-1)} \frac{1}{n} \left(\frac{x}{1+\theta x}\right)^n$$

We consider the cases $0 \le x \le 1$ and -1 < x < 0 separately.

when $0 \le x \le 1$

As $0 < \theta < 1$ it is clear that $x \le 1 < 1 + \theta x$. Hence

$$0 < \frac{x}{1 + \theta x} < 1$$

Therefore,

$$\lim_{n\to\infty} \left(\frac{x}{1+\theta x}\right)^n = 0$$

Moreover,

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Therefore, for $0 \le x \le 1$ we have

$$\lim_{n\to\infty}R_n=0$$

Hence, the condition for Maclaurin's infinite expansion for f(x) is satisfied for $0 \le x \le 1$.

when -1 < x < 0

In this case x may or may not be less than $1 + \theta x$. Hence nothing can be predicated about $\lim_{n \to \infty} \left(\frac{x}{1 + \theta x} \right).$

So, with Lagrange's form of remainder no conclusion is possible regarding infinite series.

Next, let us consider, Cauchy's form of remainder given by

$$R_n = \frac{x^n (1 - \theta)^{(n-1)}}{(n-1)!} f^{(n)}(\theta x)$$

Therefore,

$$R_n = \frac{x^n (1-\theta)^{(n-1)}}{(n-1)!} \frac{(-1)^{(n-1)} (n-1)!}{(1+x)^n} = (-1)^{(n-1)} x^n \left(\frac{(1-\theta)}{(1+\theta x)}\right)^n \frac{1}{(1+\theta x)}$$

As $1 - \theta < 1 + \theta x$ we have

$$\lim_{n \to \infty} \left(\frac{1 - \theta}{1 + \theta x} \right)^{(n-1)} = 0$$

Moreover,

$$\lim_{n \to \infty} x^n = 0 \quad \text{and} \quad \frac{1}{(1 + \theta x)} < \frac{1}{(1 - |x|)}$$

Therefore, for -1 < x < 0 we have

$$\lim_{n\to\infty} R_n = 0$$

Hence, the condition for Maclaurin's infinite expansion for f(x) is satisfied for -1 < x < 0also. Now,

$$f(0) = \log(0+1) = 0$$

and

$$f^{(n)}(0) = \frac{(-1)^{(n-1)}(n-1)!}{(1+0)^n} = (-1)^{(n-1)}(n-1)!$$

As the general form of Maclaurin's expansion is given by,

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$$

We get the following Maclaurin's infinite series for $f(x) = \log(1+x)$,

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

for $-1 < x \le 1$.

36. Obtain series expansion of $(1+x)^m$.

Answer:

For the function $f(x) = (1+x)^m$ we shall consider two cases depending on whether m is a positive integer or not.

Case:1 m is a positive integer:

In this case, for every $x \in R$ and for each $m \le n$ we have

$$f^{(n)}(x) = m(m-1)(m-2)\cdots(m-n+1)(1+x)^{m-n}$$

Hence f(x) possesses continuous derivatives of all orders upto m.

Moreover, for m < n we have, $f^{(n)} = 0$. This implies that

$$\lim_{n\to\infty}R_n=0$$

Hence, the condition for Maclaurin's infinite expansion for f(x) is satisfied for $\forall x \in R$, when m is a positive integer.

We have,
$$f(0) = 1$$
 and $f^{(n)}(0) = m(m-1)(m-2)\cdots(m-n+1)$.

Therefore, we get the following Maclaurin's infinite series for $f(x) = (1+x)^m$, $\forall x \in R$ and postitive integer m

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \dots + x^m$$

Case:2 m is a non-positive integer:

In this case, for every $x \neq -1$ function f(x) possesses continuous derivatives of all orders.

Now, we shall consider the cases of |x| < 1 and |x| > 1 separately.

For -1 < x < 1, (i.e. |x| < 1) let us consider Cauchy's form of remainder in Maclaurin's expansion.

$$R_{n} = \frac{x^{n}(1-\theta)^{n-1}}{(n-1)!} f^{(n)}(\theta x)$$

$$\therefore R_{n} = \frac{x^{n}(1-\theta)^{n-1}}{(n-1)!} m(m-1)(m-2) \cdots (m-n+1)(1+\theta x)^{m-n}$$

$$\therefore R_{n} = \left(\frac{m(m-1)(m-2) \cdots (m-n+1)x^{n}}{(n-1)!}\right) \left(\frac{1-\theta}{1+\theta x}\right)^{n-1} (1+\theta x)^{m-1} - \cdots (1)$$

Now, for |x| < 1 we have

$$\lim_{n\to\infty}\frac{m(m-1)(m-2)\cdots(m-n+1)}{(n-1)!}x^n=0$$

Since $1 - \theta < 1 + \theta x$ we have $\frac{1 - \theta}{1 + \theta x}$. Hence,

$$\lim_{n\to\infty} \left(\frac{1-\theta}{1+\theta x}\right)^{n-1} = 0$$

Also, as $0 < \theta < 1$, for m > 1 we have,

$$(1+\theta x)^{m-1}<(1+|\theta x|)^{m-1}<(1+|x|)^{m-1}$$

and for m < 1 we have,

$$(1+\theta x)^{m-1} = \frac{1}{(1+\theta x)^{1-m}} < \frac{1}{(1-|x|)^{1-m}}$$

Hence, from (1) it follows that

$$\lim_{n \to \infty} R_n = 0 \quad \text{for } |x| < 1$$

Hence, the condition for Maclaurin's infinite expansion for f(x) is satisfied for |x| < 1 and non-positive integer m

The general form of Maclaurin's expansion is given by,

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(a) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$$

We have, f(0) = 1 and $f^{(n)}(0) = m(m-1)(m-2)\cdots(m-n+1)$

Therefore, we get the following Maclaurin's infinite series for $f(x) = (1+x)^m$, $\forall |x| < 1$ and non-postitive integers m

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \cdots$$

Finally let us consider the case when |x| > 1. In that case,

$$\lim_{n\to\infty}\frac{m(m-1)(m-2)\cdots(m-n+1)}{(n-1)!}x^n\neq 0$$

Therefore,

$$\lim_{n \to \infty} R_n \neq 0 \quad \text{for } |x| > 1$$

Hence, for |x| > 1 the Maclaurin's expansion is not possible.

Rajesh P. Solanki