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1. Increasing Function at a point

Increasing Function at a point
Let f be a function defined in some neighbourhood of a number c. If there is some § > 0 such
that

f(z) < flc), Vz € (c—dc)
and

flo) < f(z), Vz € (c,c+9)

flz) < f(c), Yz e (c—9,c)
and

fle) € f(z), YV z € (¢,c+ 0)

.

X
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c—0 T ¢ T c+96

Figure 1: Increasing Function at a point ¢

then f is said to be an Increasing function at c.

2.  Strictly Increasing Function at a point

Strictly Increasing Function at a point
Let f be a function defined in some neighbourhood of a number c. If there is some § > 0 such
that

f(z) < fle), Vz e (c—d,c)
and

flo) < f(z), Vz e (¢,c+9)
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then f is said to be a Strictly Increasing function at c.

3. Decreasing Function at a point ]

Decreasing Function at a point
Let f be a function defined in some neighbourhood of a number c. If there is some § > 0 such
that

f(z) 2 fe), Vz € (c—dc)

and
flc) > f(x), Vz € (c,c+ )
Y A
f(z)
| f(z) 2 f(c), Yz € (c—dc)
‘ \'/ and

| f©) = f(=), Y z € (¢,c+ )

& ] ‘ -

el Y TR i

X

Figure 2: Decreasing Function at a point ¢

then f is said to be a Decreasing function at c.

4.  Strictly Decreasing Function at a point

Strictly Decreasing Function at a point
Let f be a function defined in some neighbourhood of a number c. If there is some § > 0 such
that

f(z) > f(e), Vz € (c—d,c)
and

fle)> f(z), Vz € (c,c+9)

then f is said to be a Strictly Decreasing function at c.



[ 5. Increasing Function in an interval.

Increasing Function in an interval
Let f be a function defined on an interval [a, b].
If

f(z1) < f(x2), V21 < 23, where 1,23 € [a, b

then f is said to be an Increasing function on [a, b].

[ 6. Strictly Increasing Function in an interval.

Strictly Increasing Function in an interval
Let f be a function defined on an interval [a, b].

If

fl@1) < f(za), V 1 < z2, where z1,z; € [a,}]

then f is said to be a Strictly Increasing function on [a, b].

7. Decreasing Function in an interval.

Decreasing Function in an interval
Let f be a function defined on an interval [a, b].
If

f(z1) 2 f(®2), ¥V 21 € z2 where 31,23 € [0,

then f is said to be a Decreasing function on [a, b].

[ 8.  Strictly Decreasing Function in an interval.

Strictly Decreasing Function in an interval
Let f be a function defined on an interval [a, b].
If

f(z1) > f(z2), Y 21 < z3, where 1,22 € [a,b]

then f is said to be an Strictly Decreasing function on [a, b].



9. If f'(¢c) > 0, then prove that f is an increasing function at point z = c. ]

Proof:
Let f be a function defined on [a, b] such that it is derivable at a point ¢ € (a, b).

We get the derivative by
o f@) Q)

T—C Tr—C

= f'(c)

For any given € > 0 there exists some § > 0 such that

f(xa)c — (]:”(c) f'(c)| < € whenever 0 < |z—c|<é
This implies that,
fllc)—e< w < f'(c) + € whenever z € (c—9d,c+4d), z#c ---(1)

Now, suppose f'(c) > 0.

Then we can select some sufficiently small € > 0 such that 0 < f'(c) — e.

' N

| 1 | >
1 1 | z

0 f'(c) —€ f'(e)

Figure 3: Selecting € > 0 such that 0 < f'(c) —

4.

For this choice of € > 0 there must be some § > 0 satisfying (1).

As 0 < f'(c) — €, from (1) it follows that,
_f@ - 5(0)

r—cC

whenever z € (c—6d,c+9), z#c ---(2)

f(z) - 1)

r—cC

f(z) — f(¢) <0 whenever z € (c—é,c)

If z € (¢c—6,c) then £ — ¢ < 0. So to have 0 < —~——— we must have

This implies that,
f(z) < f(¢) whenever z € (c—46,¢) ---(3)

Also, if x € (¢,c¢+ ) then £ — ¢ > 0. So to have 0 < w we must have

f(z) — f(¢) >0 whenever z € (c,c+9)
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This implies that,
f(c) < f(z) whenever z € (c,c+4) ---(4)

From (3) and (4) it follows that, f is increasing at c

10. If f'(c) <0, then prove that f is a decreasing function at point z = c.

Proof:
Let f be a function defined on [a, b] such that it is derivable at a point ¢ € (a, b).

We get the derivative by
T f(.’E) - f(C) = f’(C)
T—cC T —cC

For any given € > 0 there exists some § > 0 such that

w — f'(c)| <€ whenever 0< |z —¢| < ¢
This implies that,
flle)—e< W < f'(c) + ¢ whenever z € (c—d,c+9), z#c ---(1)

Now, suppose f'(c) < 0.

Then we can select some sufficiently small € > 0 such that f/(c) + € < 0.

' i

1 1 | =
1 1 1 v

file)  file)+e 0

Figure 4: Selecting € > 0 such that f'(c) +¢ <0

F 3

For this choice of € > 0 there must be some § > 0 satisfying (1).
As f'(c) + € < 0, from (1) it follows that,

fz) = f(o)

pr— <0 whenever z € (c—4,c+9), z#c ---(2)

f(z) = f(c)

r—cC

If z € (¢c—6,c) then z — ¢ < 0. So to have < 0 we must have

f(z) — f(c) >0 whenever z € (c—é,c)

This implies that,
f(z) > f(¢) whenever z € (c—4d,c) ---(3)
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fz) — f(e)

Also, if z € (¢,c+ §) then £ — ¢ > 0. So to have < 0 we must have

f(z)— f(c) <0 whenever z € (¢c,c+9)

This implies that,

f(z) < f(c) whenever z € (c,c+6) ---(4)

From (3) and (4) it follows that, f is decreasing at ¢

2 2

11. Show that log(l + z) lies between z — % and z — ﬁ, Yz >0
Solution:
x* 7
We have to prove that z — Y <log(l+z)<z— m, Vz >0
2
First define, f(x) = log(l + z) — (w — %)
Here,
f@) =1 -(-2)
Cl+z
Ol 1=
- 1l+=z
T r+1
>0, Vz>0

Therefore, f is strictly increasing for all z > 0
Therefore,

0<z= f(0) < f(x)
= log(1+0) — (0—02—2) <log(l+z)— (m—%z)

22
=0 <log(l+z)-— (:1:—?)

2

=>:c—%<log(1+:c) ————— (2)

72
Next, define, g(z) = (:r - 2(1"‘37)) — log(1 + z)
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Here,

2(1 + z)(2z) — z%(2) 1
- 4(z +1)? 14z
oz 4z + 4z? — 227
T 1l+z 4z +1)?
- 2z + z°
T 14z 2z+1)?
_ 2z(z+1) — (22 + 2%)

2(z + 1)
2

gz)=1

_ €T
2z +1)2
>0, V>0

Therefore, ¢ is strictly increasing for all z > 0
Therefore,

0<z=g(0) < g(z)

= (0—2(00—:1)) —log(1 +0) < (x—m”’—:l)) —log(1 + )

:,o<(m_2(;_+l))_1og(1+m)

T 3
= log(l + iE) L = m ————— (%)
: "y 2 z
From (i)and (ii) it follows that z — =i log{l+z) <z — 1) vz >0

[ 12. Prove that, l—kix <log(l+z) < z for all z > 0.

Solution:
Define f(z) = log(l1+ z) —

l+z
Here,

1 (+x))—=(1)
l+z (x+1)2
1 1
T 1l+z  (z+1)2
_(14+=z)-1

(z +1)2

(z+1)2
>0,Vz >0

fi(z) =




Therefore, f is strictly increasing for all z > 0
Therefore,

0<z= f(0) < f(z)

= log(1+0) — 1(]% <log(l+z)—

= 0<log(l+=x)—

142

14z

Again define g(z) = z — log(l + z)
Here,

1
! =1_
g{z) z+1
Foon

4 z+1
T

=m—|—1
>0,z >0

Therefore, g is strictly increasing for all 0 < z
Therefore,

0<z=g(0) <g(z)
= 0—log(l+0) < z —log(l + x)
= 0<z—log(l+x)
=loglz+ 1)<z ————— (i%)

From (i)and (ii) it follows that l-T-

$<10g(1+:1:)<.1:f0ra.119:>0

13. State and prove the Darboux’s theorem for derivable function.

Darboux’s Theorem:
If a function f is derivable on a closed interval [a, 8] such that f'(a) and f'(b) are of opposite
signs then there exists at least one point ¢ between o and b such that f'(c) =0

Proof:
Let us suppose f'{a) < 0 and f/'(b) >0

Since f'(a) < 0, the function f is decreasing at a in [a, ]

Therefore, there is some 4; > 0 such that
fla) > f(z), V z€{a,a+8&) ---(1)
Also, as 0 < f(b), the function f is increasing at b in [a, b]

Therefore, there is some d; > 0 such that

F@) < ),V z€ (b—db) ---(2)
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\)‘(1) f(x) < f(a), Vx € (a,a+ d1)
and

flx) < f(b), YV x e (b—da,b)

»

(L(L"l-(jl c l)—(SQ b X

_

Figure 5: f must have infimum at an interior point ¢

Now, as f is derivable on [a,b] it is continuous on the interval. Since f is continous on the
closed interval [a, b] it is bounded and attains its bounds.

Suppose m is the infimum of f on [a,b]. Then there must be some c in [a, b] such that
fle)=m

As m is the infimum of f on [a, b], from (1) and (2) it is follows that f(a) # m and f(b) #m

But then, f(a) # f(c) and f(b) # f(c).

This implies that a # c and b # ¢. Therefore
c € (a,b)

Thus, c is an interior point of [a, b|.
Next we show that f'(c) £ 0 and f'(c) # 0
If possible suppose, f'(c) < 0.

Then f is decreasing at c¢. Therefore there exists some d; > 0 such that
f(c)> f(z), V z € (c,c+63)

But then we have,
m> f(z), V z € (c,c+3)

which is not possible as m is the infimum of f in [a,b]. Therefore we must have
f'(e) £0
Again, if possible suppose, f'(c) > 0.

Then f is increasing at c¢. Therefore there exists some 6§, > 0 such that

fle)> f(z), V z € (c—d4,¢)
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But then we have,
m> f(z), V 2 € (¢— d4,¢)

which is not possible as m is the infimum of f in [a, b]. Therefore we must have

fle)#0
As R is an ordered field, by the low of Trichotomy we must have,
flle)=0
[ 14. State and prove Rolle’s theorem J

Proof:

If a function f is continuous on [a, b] then it is bounded on [a, b] and attains its bounds at some
points in [a,b]. If m and M are the infimum and the supremum of f in [a,b] then for some
points ¢ and d in [a, b] we have,

fley=m and f(d)=M
If m = M then f is a constant function on [a, b]. In that case for every ¢ € [a, b] we get f(c) = 0.

Now, if m # M then any given number must be different from atleast one of m and M.

Therefore, we have either f(a) # m or f(a) # M Suppose, f(a) # m.

Therefore,
fl@) #m= fla) # flc)=a#c
and
fO)#m=jb)# flc=b#c
Hence
c € (a,b)

Finally, we show that f(c) £ 0 and f(c) # 0.

If possible, suppose f'{c) < 0. Then f is a decreasing function at ¢. Therefore there ex-
ists some 0; > 0 such that
fle} > flz), ¥ z€{c,c+6b1)

But then
m> f(z), ¥ z €{c,c+d)

This is not possible as m is the infimum of f on [a, b]

Therefore

fle) £0
Again, if possible, suppose f'(c¢} > 0. Then f is an increasing function at ¢. Therefore there
exists some d, > 0 such that

fle) > f(z), ¥ z € (c—bs,¢)
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But then
m> f(z), V z € (c— da,c)

This is not possible as m is the infimum of f on [a, b]

Therefore
fle)#0

As R is an ordered field, by the low of Trichotomy we must have,
fle)=0

15. Discuss Geometric Meaning of Rolle’s theorem.

Geometric Interpretation of Rolle’s Theorem
The Rolle’s theorem states the following,

If a function f defined on [a, b] is
(i) continuous on [a, b]

(ii) differentiable on (a,b) and
(iii) f(a) = f(b)

then there exists atleast one real number ¢ between a and b such that f'(c) =0

Geometrically, it can be said that if a function f is continuous on [a,b] and derivable on
(@, b) such that the ordinates f(a) and f(b) at the end points of [a, b] are equal then there is
atleast point ¢ € (a, b) such that the the tangent at the point (¢, f(c)) on the graph of y = f(x)
is parallet to the X —axis. In other words the slope of the tangent at (c, f(c)) is

f'(c)0
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16. Discuss Algebraic Meaning of Rolle’s theorem.

Algebraic Interpretation of Rolle’s Theorem
The Rolle’s theorem states the following,

If a function f defined on [a, ] is
(i) continuous on [a, b

(i) differentiable on (a,b) and
(i) f(a) = f(b)

then there exists atleast one real number ¢ between a and b such that f'(c) =0

Algebraically, it can be said that there is atleast ROOT of the equation f’(z) =01in (e,b). In
other words the equation f’(z) = 0 has atleast one zero in (a, b).

[ 17. State and prove Lagrange’s Mean Value theorem ]

Proof:
Define a function ¢ on [, b] as follows,

¢(z) = f(z) + Az

where A is to be determined such that ¢(a) = ¢(b).
In that case, we must have,

f(a) + Aa = f(b) + Ab
A(a —b) = f(b) — f(a)
i )@

b—a

Now ¢(z) is a sum of two functions, namely f(z) and Az, which are continuous on [a, b] and
derivable on (a, b). Therefore, we have the following for ¢(x),

(1) ¢(z) is continuous on [a, b]
(2) ¢(x) is derivable on (a,b)
(3) ¢(a) = 4(b)

Therefore, by the Rolle’s therorem there exists some ¢ € (a,b) such that
#(c) =0

Since
¢(z) = flz) + A
we get,

fle)+A=0

13



Tangent at (c, f(c)) parallel to AB

A B(b, f(b))

. filc)=-A
Hence,

18.  Discuss Geometric Meaning of Lagrange’s theorem

Geometric Interpretation of Lagrange’s Theorem
The Lagrange’s theorem states the following,

(1) continuous on [a,b] and
(2) differentiable on (a, b)
then there exists atleast one real number ¢ between a and b such that

o= 10-J0

Geometrically, it can be said that if a function f is continuous on [a, b] and derivable on (a, b)
then there is atleast one point c € (a, b) such that the the tangent at the point (c, f(c)) on the
graph of y = f(z) is parallel to the chord AB joining the points A(a, f(a) and B(b, f(b).

19. State and prove Cauchy’s Mean Value theorem

Proof:
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Define a function ¢ on [a, b] as follows,

$(z) = f(z) + Ag(z)

where A is to be determined such that ¢(a) = ¢(b).
In that case, we must have,

fa) + Agla) = f(b) + Ag(b)
A(g(a) — g(b)) = f(b) — f(a)

4o 1O -f@)

9(b) — g(a)

Now ¢(z) is a sum of two functions, namely f(z) and Ag(z), which are continuous on [a, b]
and derivable on (a,b). Therefore, we have the following for ¢(z),

(1) ¢(z) is continuous on [a, b]
(2) ¢(z) is derivable on (a, b)
(3) ¢(a) = 4(b)

Therefore, by the Rolle’s therorem there exists some ¢ € (a,b) such that

#(9) =0
Since
¢'(z) = f'(z) + Ad'(z)
we get,
Flo) + Ag (c) =
flle) = Ag (c)

f’(C) o

G
Hence,

F(c) _ £(b) — f(a)
g(c) &) &)

20. If a function f(z) satisfies the conditions of the Lagrange’s Mean Value
Theorem and f/(x) =0, Vz € [a,b] then prove that f is constant on [a, b]

Proof:
Function f(x) satisfies the conditions of the Lagrange’s Mean Value Theorem on [a, b].

Now, for any z1, 2 € [a, b] such that z; < x5 we have
[:Bl: 552] e [a'a b]
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Therefore f(z) also satisfies the conditions of Lagrange’s Mean Value Theorem on [z, z5].

Therefore, there exists some ¢ € (z1, z2) such that,

flz2) — f(z1)

Iz — I

Q)= -

As it is given that f'(z) =0, Vz € [a,b], we have f'(c) =0.
Therefore, from (1) we get,

f(z2) — f(=1) -0
Ias— I
f(@2) = f(z1) =0
f(z2) = f(z1)

As choice of z1, 25 € [a, b] is arbitrary, it follows that f assumes same value for all z € [a, b].

Hence, f is constant on [a, b].

21. If two functions have equal derivatives at all points then show that they
differ only by a constant

Proof:
Let f and g be two functions defined on (a, b) such that

f'(z) = ¢ (=) Vz € (a,b)

Now define,
h(z) = f(z) — g(z), Vz € (a,b)
As f and g both are derivable on (a,b), h is also derivable on (a,b) and

K(z) = f(z) — g'(z) Vz € (e,b)
H(z)=0 Vz € (a,b)

Hence h is a constant function on {a, b).

Therefore, for some constant k ,
h(z) =k, Vz € (a,b)

f(.‘L‘) - g(.’B) = k! Vz € (a, b)
Hence, f(z) and g(z) differ only by a constant.

22. If f is continuous on [a, b], derivable on (a,b) and f'(z) > 0, Vz € (a,b) then
prove that f is strictly incerasing function on [a, ]

Proof:
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Here, function f is continuous on [a, 5] and derivable on (a, b).
Therefore f stisfies all the conditions for Lagrange’s Mean Value Theorem.
Moreover it is given that f'(z) >0, Vz € (a,b)
Now, for any z1,z2 € [a, b] such that z; < x5 we have
[1, 2] C [a, b]
Therefore f(z) also satisfies the conditions of Lagrange’s Mean Value Theorem on [z, z2].

Therefore, there exists some ¢ € (x1,22) such that,

f(z2) — f(z1)

Ta — I

1(e) = - ()

As it is given that f'(z) > 0, Vz € [a, b], we have f'(c) > 0.
Therefore, from (1) we get,

f(z2) — f(z1)

0< LI g
0 < f(z2) — f(z1)
flz1) < f(z2)

Thus we have,
1 < Ty = f(z1) < f(zq), for zy,z4 € [a,b]

Hence, f is strictly increasing on [a, b].

sin o — sin T
—ﬁ=cot9, for some § where 0 < a <0< 8 < —

23. Show that
= B S cos B —cosax 2

Solution:
For 0 < a < § < 7, define,

f(z) =sinz and g(z) = cosz for z € [a, f]

As sin and cos both are continuous on [0, 7] and derivable on (0, 7) they are also continuous
on [a, 8] and derivable on (a, 8).

Also, ¢'(z) = —sinz # 0, Vz € (a, §).
So, the Cauchy’s Mean Value theorem is appicable. Therefore there is some 8 € (e, ) such

that,
70) _ 1(8) - £(a)
g  9(8)—gla)
. cosf  sinf—sina
"' —ginf cosf —cosa

17



cosf sina—sinf

" sinf cosf — cosa
sino — sin 8

: = cotf
cos B — cos

24. A twice differentiable function f is such that f(a) = f(b) =0 and f(c}) > 0
for a < ¢ < b. Prove that there is al least one value £ between a and b for
which f7(¢) < 0.

Solution:
Here, f is a twice differentiable function on (a,b) such that f{a) = f(b) =0

Therefore, f” exists on {a,b), hence f’ also exists on (a, b).
Also, at a point ¢ € (a,b) it is given that f(c) > 0.

Applying Lagrange’s Mean Value Theorem on [a,c] and [e,b] we get some & € (a,c) and
& € (¢, b) such that

AL LR RS i L e [
As, f{a) = f(b) =0, we get
re)=29 wa re)-9 g

Also, f'(z) is continuous on [£;, &)]- Therefore, again applying Lagrange’s Mean Value Theorem
to f'(z) on [&1, &) we get some & € [£1, &) such that,

f'(&) — fl&)

UOEEE- !
Substituting for f'(&;) and f'(&2) from (1), we get,
e fle) O Fla)
716 = =1
&% lsme" omd]

_ flo '(C—a)+(b—6)]
&—& [ (b—cc—a)
O SO
&—& [(b—c)(c—a)

Since, f{c) > 0 and all the numbers in each of the brackets on the RHS are positive, we have
'€ <o

18



[ 25. State and prove Taylor’s theorem. ]

Taylor’s Theorem:

If a function f defined on [a,a + k] is such that

(i) the (n — 1)* derivative 2 is continuous on [a,a + h] and

(ii) the n™ derivative f™ exists on (a,a + h), then there exists atleast one real number 6
between 0 and 1 such that

fath) = F@+ 2@+ E @+ By 4 B iy
1! 2! 3! (n — L)!
A1 —60)"
—y ™ {(a+6h)
where p is a possitive integer.
Proof:
As ™1 is continuous on [a, a + k], it implies that
£ f .., f® ) all exist and are continuous on [a,a + A
Define,
3 P nd i3
#e) = @)+ DD gy @B gy 0B i) ...
h) — n—1
et o2l i)+ Aot h—ap

Where A is a constant to be determined such that

¢(a + k) = ¢(a)

For this we must have,

FlatB) = F(@) + @) + o ) 4 e ot o O D(a) 4 AR - (1)
1 5] 3! ()]
Now, f, f', f",..., f® Y are continuous on [a,a + A] implies that
@(z) is continuous on [a,a+ A] - - - (2)

Moreover, f™ exists on (a,a + h) implies that f, f, £/, ..., f®™ 1 are derivable on (a,a + h).
Therefore,
¢'(z) is derivable on (a,a+ h) - - - (3)
Also,
#(a+h) =4(a) - - - (4)
From (2),(3) and (4) it follows that ¢(xz) satisfies all the conditions of Rolle’s theorem and
hence there exists some real number 8 € (0, 1) such that

¢'(a+6h)=0
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We have, .
rrn _ (@+h—z)"

Therefore, ¢'(a + 6h) = 0 implies that

(@) - Ap(a+h— 2)"

la+h - (a+ 6R)

f™a+6h) — Apla+h —(a+6R)P1 =0

(n— 1)l
""_;(11__1‘;?"_1 £ (a + 0k) — Aph?~1(1 — 6)7~ = 0
- (@ oy = U e an
A= e o
Substituting for A in (1), we get
fla+h) = fla)+ E (@) + h_z f"(a) + ’;_? i AT % = hn—l)' -1 (q)
_hj(ln_ e o

, where 6 € (0,1) and p is a postitive number.

[ 26. Forms of remainders in Taylor’s theorem.

(1) Schlémilch and Réche form of remainder

hr(1 — )

= p(n— 1)

F™(a + 6h)

(2) Cauchy’s form of remainder

(1 — )"~
(n—1)!

which can be obtained by taking p =1 in Schlémilch and Réche form of remainder.

R, = e (a +6h)

(3) Lagrange’s form of remainder

R, = }:a'f(ﬂ)(a + 6h)
which can be obtained by taking p = n in Schlémilch and Réche form of remainder.
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27. Prove Taylor’s theorem with Cauchy’s form of remainder by taking the
function
(a+h—z) (a+h — x)? (a+h—xz)™t
#@)=f@)+ =gy S @+ @t )
+A(a+h—x)
Proof:
Let f be a function defined on [a,a + h] is such that
(i) the (n — 1)** derivative f®"~1 is continuous on [a,a + ] and
(ii) the n*® derivative f™ exists on (a,a + h)
As f™1 is continuous on [a,a + k], it implies that
£ 78" .., f" D all exist and are continuous on [a,a + A
Define,
- _ )2 3
((a+h)—2)"" oy
=1 f* N z)+ Ala+h—2x)

Where A is a constant to be determined such that

¢(a + k) = ¢(a)

For this we must have,

R) = h ’ h? ] h? i = (n—1) Ah 1
F@+ ) = F@)+ 176+ 5@ + S (0) 4+ e V@) + A (1)
Now, f, f', f",..., f® 1 are continuous on [a,a + A] implies that
#(z) is continuous on [a,a + A] - - - (2)

Moreover, f® exists on (a,a + k) implies that f, f', f/,..., f 1 are derivable on (a,a + h).
Therefore,
¢'(x) is derivable on (a,a+h) - - - (3)
Also,
¢(a+h)=9¢(a)---(4)
From (2),(3) and (4) it follows that ¢(z) satisfies all the conditions of Rolle’s theorem and
hence there exists some real number 8 € (0, 1) such that

¢'{a+6h)=0
We have, : -
; =g =
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Therefore, ¢'(a + 6h) = 0 implies that
[a +h — (a+6h)]"1

f™(a+6n)—A=0

(n—1)!
hn;gl__l';?ﬂl F™(a+6R)—A=0
A= "’"'_ZS__ 1(;3“_1 F™(a+ 6h)
Substituting for A in (1), we get
h ! h? i h? ] il (n—1)
fla+h) = fla) + 3y f(a) + 5 (@) + 5 f @)+ o +(n_1)!f (a)

nf1 _ Mmn—1
% £n)(a + OR)

Where the last term in the expansion is the Cauchy’s form of Remainder.

r

28. State and prove Generalised Mean Value theorem.
OR

Deduce Taylor’s theorem from Mean Value Theorem.

Generalised Mean Value theorem:

Let f be a function defined on [a,a + k] such that

(i) the (n — 1)** derivative £ is continuous omn [a,a + k] and

(ii) the n*® derivative f™ exists on (a,a+ h),

then there exists atleast one real number & between 0 and 1 such that

R = h ’ h? 1 h " "5 (n—1)
fatB) = 1@+ 5@ + 5@ + 3@+ 4
A ) L.
Wf( )(a + gh)
Proof:
As f®™1 is continuous on [a, a + k], it implies that
L7, 8", FO D all exist and are continuous on [a, a + A
Define,
_ )2 PRy
o) = )+ (D=9 iy (@D =V ) (ae W=

2! 3!
((a' + h) — "B)n_l f(-n—l)( )
(n—1)! a
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As f, f', f",..., f® D are continuous on [z, a + ] implies that
¢(z) is continuous on [a,a+ k] - - - (1)

Moreover, f®) exists on (a,a + h) implies that f, f, f/,..., f™ 1 are derivable on (a,a + h).
Therefore,
¢'(z) is derivable on (a,a+ h) - - - (2)

Therefore by Lagrange’s Mean Value Theorem there exists some 8 € (0, 1) such that
dla+ h) = ¢a) + h¢'(a + 6h)

Therefore,
h ; h2 ) " hn— -1 !
fla+h) = f@)+ 5/ (@) +5f (a)+ f (@t + gy /" (@) + R (a+-6) - - - (3)
As (@t h—z)n1
#(e) = “—r—pr— ")
we have, b
¢I(a' el Gh) -, [a’ +h (_n(i —]i-_)?h’)] f(‘n) (G, + gh)
. ¢/a+0h) = h"_zs_‘lfﬁ"'l £ (a + 6h)

Substituting in (3) we get,

_f(n 1)( )+ (—)nlf(n)(a_I_gh)

f(a—l-h) f(a)-|- f’(a) f”(ﬂ:)-l-};—?fm(a)—l—- D B ( )

(n 1)'

29. State Maclaurin’s theorem and deduce it from Taylor’s theorem.

Maclaurin’s theorem:

Let f be a function defined on [0, k] such that

(i) the (n — 1)* derivative f®* 1 is continuous on [0, & and

(ii) the n*® derivative f™ exists on (0, h),

then for each z € (0, h) there exists atleast one real number 8 € (0,1) such that

F@) =10 + GIO + @+ GO+t 7 1O0(0)
(1 -y .
A

Proof:
As f™=1 is continuous on [0, A] and f™ exists on (0, k) for any = € (0, ) it implies that f(»—1
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is continuous on [0,z] and f™ exists on (0, z).

Therefore, by Taylor’s theorem, for a postive integer p there exists some 8 € (0, 1) such that

(n—1)!

1@ = 1O+ ZFO + 5 Q) + S 7O+ o )

(1 — 6)"?

p(n— 1! F®(6z)

30. Forms of remainders in Maclaurin’s theorem.

(1) Schlémilch and Réche form of remainder

(1 — 6)"P

o 1] F™(6z)

R, =

(2) Cauchy’s form of remainder

S

which can be obtained by taking p = 1 in Schlémilch and Réche form of remainder.

(3) Lagrange’s form of remainder

_ T
which can be obtained by taking p = n in Schlémilch and Roche form of remainder.

[ 31. Taylor’s Series

Taylor’s Series

For a function f defined on [a,a + h] if

(i) the (n — 1)* derivative f*~1 is continuous on [a,a + k] and
(ii) the n** derivative f™ exists on (a,a + h)

then by Taylor’s theorem there is some 8 € (0, 1) such that

hn—l
(n—1)!

h ! h2 1 h3 i
f(a+h)=f(“)+ﬁf(a)+§f (@"‘ﬁf (@) 4o +
+ R,

0D (a)

Where R, is the Schlémilch and Réche form or Cauchy’s from or Lagrange’s form of raminder.
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If we take
hn—l

(n—1)!

fla+h) =8+ R, ---(1)

Suppose f possesses derivative of every order on (a,a + h) and lim R, = 0. In that case
n—o0

h t h? " (n—1)
—=f(a)+ﬁf(a)+§f (o) sboneef 7 (a)

then we can write,

lim f(a+ h) = lim S, + lim R,
n—oo n—00 n—oo
Therefore, we get

ot = 1@+ @+ @)+ 4 gy

The series on the right hand side is called Taylor’s series for f{x).

f(“—l) (a) i

By taking a + h = z we can express the series in the following form

10 = 1)+ S5 + Eo gy 4y EZE iy

which the Power Series expansion of f(x) in powers of (z — a).

32. Maclaurin’s Series

Maclaurin Series

For a function f defined on [0, h] if

(i) the (n — 1)* derivative f®™1 is continuous on [0, »] and
(ii) the n*® derivative f™ exists on (0, h)

then for every = € (0, k), by Maclaurin’s theorem, there is some # € (0, 1) such that

fw=ﬂm+me F®+ W@+ F&(0)

+.y

(n— 1!

Where R,, is the Schlomilch and Roéche form or Cauchy’s from or Lagrange’s form of raminder.

If we take

z . T (n-1)
S = F(O) + /') + 5 '@+ + F=2(0)

then we can write,

xn—l
(n—1)!
f@)=8+R, ---(1)
Suppose f possesses derivative of every order on (0, ) and lim R, = 0. In that case
n—o0

lim f(z) = lim S, + lim R,
n—+oo n—oo n—o0
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Therefore, we get

mn—l

£@) = O + I O+ 5 O+ o+ g FOIO) o

The series on the right hand side is called Maclaurin’s series for f(z). which the Power
Series expansion of f{z} in powers of z.

[ 33. Obtain series expansion of e®. ]

Answer:
Function f(z) = e® possesses derivatives of every order for every z € R and f™(z) = €, V¥n.
Therefore, the Maclaurin’s expansion with remainder R, is given by

f(z) = f(0) + 5 f’(0)+ f”(U) (0) + B

1)

In the expansion, if we consider R, to be the Lagrange’s form of remainder then for 8 € (0, 1),

i B
R,= Hf( )(0z) = —¢

Here,

it
lim R, = lim —¢%
n—oo n—oo 71l

(1111’1 .'1:_) e
n—oo 7.
=0
Since 1i_{11 R, = 0, the condition for Maclaurin’s infinite expansion for f(z) is satisfied. Now,
FO)=F0) = O =) =--=fD0)=... =L =1

As the general form of Maclaurin’s expa:nsion is given by,

ﬂ

(n 1)‘

We get the following Maclaurin’s infinite series for f(z) = €*,

f@)=FO)+ 7 f(0)+ f”()+ + FED0) + -

1.2 2 g
¢ = Loy oy e+
[ 34. Obtain series expansion of cosz. J

Answer:
Function f(x)} = cosx possesses derivatives of every order for every z € R and

™ (z) = cos (@

2 +2)
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.Therefore, the Maclaurin’s expansion with remainder R,, is given by

flz)=F0)+ 5 f(0)+ f”(O) feD(0) + Ry

")

In the expansion, if we consider R,, to be Lagrange’s form of remainder then for 8 € (0,1)

R,,——f(")(ﬂx) —cos( ;—I—Ba:)

Therefore
|Ral = (% +6z)
2
ﬂ-
B = —| cos (% + 9:!:)‘
Since,
nm
|cos (? + 93:) |
we get,
xﬂ
As,
lim — =0
n—oc 1!
we conclude that,
lim R, =0
1—00

Therefore, the condition for Maclaurin’s infinite expansion for f(z) is satisfied. Now,
f(0)=cos0=1
f(0)=—sin0=0
F'(0) = —cos0=—1

F(0) =sin0 =0
f('”)(O) =cos0=1

As the general form of Maclaurin’s expansion is given by,

f(‘"-—l) (0)+---

flz) =fO)+ 7O + 5 70+ + n—1)

We get the following Maclaurin’s infinite series for f(x) = cos =,

35. Obtain series expansion of log(l + z) for -1 <z < 1.
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Answer:
(=)@ (n - 1)!
(1+z)
Hence, f(z) possesses derivatives of every order for every —1 < z < 1 and they are continuous
for |z| < 1. Therefore, the Maclaurin’s expansion with remainder R, is given by

For the function f(z) = log(1 + z) we have, f(")(z) =

mn—l

-/ O+ B

z z2
7(@) = FO) + T 1)+ 5 170+ +
In the expansion, if we consider R, to be Lagrange’s form of remainder then for 8 € (0,1)
_ T

G ) P N A A
R e G ()

We consider the cases 0 < z € 1 and —1 < z < 0 seperately.

when 0 <x <1
As 0 < @ <1itisclear that £ €1 <1+ 8z. Hence

0< <1
1460z
Therefore,
1 B
11m =
nooo \ 1+ 0z
Moreover,
1
lim — =10
n—oo Tk
Therefore, for 0 € £ € 1 we have
lim R, =0
n—r00

Hence, the condition for Maclaurin’s infinite expansion for f(z) is satisfied for 0 < z < 1.

when -1 <x<0

In this case x may or may not be less than 1 + fz. Hence nothing can be predicated about
z

JL%(I—I—B::: '

So, with Lagrange’s form of remainder no conclusion is possible regarding infinite series.

Next, let us consider, Cauchy’s form of remainder given by

:L.n(]_ _ 9)(11—1)

R = T 16
Therefore,
_ wﬂ-(l - 9)(11-—1) (_1)(n—1)(n - 1)! _ n—1) n (1 - 0) " 1
B = (n — 1)! (1+zy» - ((l—i-Gx)) (14 6x)
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As1—48 <1+ 6z we have

. 1—0 (n—1)
ﬂﬁ(1+%) =

o 1 1
e =0 ad G < (- Jal)

Therefore, for —1 < z < 0 we have

Moreover,

lim R, =0

n—roo

Hence, the condition for Maclaurin’s infinite expansion for f(z) is satisfied for -1 < 2z < 0
also. Now,
fl0)y=log(0+1)=0

and
(1) D(n—1

(1+0)m

F(0) = R T

As the general form of Maclaurin’s expansion is given by,

(n—1)!

We get the following Maclaurin’s infinite series for f(z) = log(l + z),

F@) = 10) + ZF(O) + ZP0) -+ e fD(0)

4 it
log(1+£)—x—?+§_z+...
for -1<z < 1.
[ 36. Obtain series expansion of (1 + z)™. ]

Answer:
For the function f(z) = (1 + z)™ we shall consider two cases depending on whether m is a
positive integer or not.

Case:1 m is a positive integer :
In this case, for every € R and for each m < n we have

Pz =mm-1)(m—-2)---(m—n+1)(1+z)™™
Hence f(x) possesses continuous derivatives of all orders upto m.

Moreover, for m < n we have, f® = 0. This implies that

lim R, =0

n—o0

Hence, the condition for Maclaurin’s infinite expansion for f(z) is satisfied for Yz € R, when
m is a positive integer.

We have, f(0) =1 and f™(0) =m(m—1)(m—2)---(m —n+1).
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Therefore, we get the following Maclaurin’s infinite series for f(z) = (1 + )™, Vz € R and
postitive integer m
mim—1) , mm—1)(m-—2) 4

(1+m)m=1+mx+Tm + 3 2 g™

Case:2 m is a non-positive integer :
In this case, for every x # —1 function f(x) possesses continuous derivatives of all orders.

Now, we shall consider the cases of |z| < 1 and |z| > 1 seperately.

For -1 < z < 1, (i.e. |z| < 1) let us consider Cauchy’s form of remainder in Maclaurin’s
expansion.

)
e P T ;™ ()
B M= Mm(m —1)(m—-2)---(m—n+1)(1+6z)™ ™

(n—1)!

R — (m(m —~1)(m —(nz)_ 1) !(m —-n+ 1)1:") (11;91 )"—1 Ao - ()

Now, for |z| < 1 we have,

it m(m—l)(m—2)---(m—n—|—1)$n:

n—roo (n i 1)' 2

1—
Since 1 — # < 1 4 0z we have 1 . Hence,

+ 6z

] 1_9 n—1
,}L‘Eo(uaz) 2

Also, as 0 < 8 < 1, for m > 1 we have,

(1+62)" < (1+0z)™ ' < (1 + |z|)™?

and for m < 1 we have,

Bl 1 1
U0 = e < T fep=

Hence, from (1) it follows that

leRn=0 for |z| <1

Hence, the condition for Maclaurin’s infinite expansion for f(z) is satisfied for |z|] < 1 and
non-positive integer m

The general form of Maclaurin’s expansion is given by,
mn—l

n— 1)!f(n—1)(0) —

flz) = f(0)+ %f’(O) + %f”(a) P
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We have, f(0) =1 and f™(0)=m(m — )(m —2)---(m—n+1)

Therefore, we get the following Maclaurin’s infinite series for f(z) = (1 + z)™, V|z| < 1
and non-postitive integers m

1+z)"=14+mz+ m(mz,l— 1):1:2 + i — Q(m— 2):1:3 + -
Finally let us consider the case when |z| > 1. In that case,

lim m(m—1)m—-2)---(m—n+1)
n—»o0 (n—1)!

" #£0

Therefore,
ILm R.#@ for z| > 1

Hence, for |z| > 1 the Maclaurin’s expansion is not possible.
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