T.Y.B.Sc. : Semester - V (CBCS) # US05CMTH24 Metric Spaces and Topological Spaces [Syllabus effective from June, 2020] Study Material Prepared by: Mr. Rajesh P. Solanki Department of Mathematics and Statistics V.P. and R.P.T.P. Science College, Vallabh Vidyanagar # US05CMTH24- UNIT: III ## 1. Cluster point #### **Cluster Point:** Let (X,T) be a topological space and $A \subset X$. A point p in X is said to be a cluster point of A if every T-neighbourhood of p contains at least one point of A other than p. i.e. ## NOTE: The definition implies that if p is a cluster point of A and N is a neighbourhood of p then $$(A - \{p\}) \cap N \neq \emptyset$$ 2. Find the set of cluster points of (1,2) in usual topology and discrete topology of $\mathbb R$ ## Answer: ## \mathcal{U} -topology Here, (1,2) is a subset of R with usual topology, \mathcal{U} -topology. First we show that each point of [1,2] is a cluster point of (1,2) Let r be any positive number. Now, open interval (1, 1 + r), contains at least one point of (1, 2) other than 1. So 1 is a cluster point of (1, 2). Also, (2 - r, 2) contains at least one point of (1, 2) other than 2. So 2 is a cluster point of (1, 2). Also, for any $c \in (1,2)$, the interval (c-r,c+r) contains at least one point of (1,2) other than c. So c is a cluster point of (1,2). Thus, each point in [1,2] is a cluster point of (1,2) Finally, we show that no point out side [1, 2] can be a cluster point of (1, 2) Let $x \notin [1,2]$. If 2 < x then we can choose some sufficiently small $\epsilon > 0$ so that $$2 < x - \epsilon < x$$ Therefore, $$(1,2)\cap(x-\epsilon,x+\epsilon)=\emptyset$$ So, x cannot be a cluster point of (1, 2). Similarly it can be shown that if x < 1 then also x cannot be a cluster point of (1,2) the set of all cluster points of (1,2) is [1,2] # \mathcal{D} -topology For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R Therefore, every subset of R is a \mathcal{D} -open set. Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p. Now, let A be any subset of R. Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset . Therefore, the set of cluster points of (1, 2) is also \emptyset . - 3. Find the sets of cluster points of the following subsets of \mathbb{R} - (1) R (2) $\left\{\frac{1}{n}/n \in J^+\right\}$ (3) $\left\{-\frac{1}{n}/n \in J^+\right\}$ - (4) the set \hat{J} of all integers. relative to (i) U-topology (ii) I-topology (iii) D-topology # \mathcal{U} -topology - $\overline{(1)}$ The set of cluster points of R is R - (2) The set of cluster points of $\left\{\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ - (3) The set of cluster points of $\left\{-\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ - (4) The set of cluster points of \hat{J} is \emptyset # \mathcal{I} -topology $\overline{\text{For }R, \text{ we have the indiscrete topology }\mathcal{I}} \text{ given by } \mathcal{I} = \{\emptyset, R\}$ Therefore, the only non-empty \mathcal{I} -open set is R. Therefore for every real number p there is only one \mathcal{I} -neighbourhood of p that is R. 3 Now, let A is a subset of R with more than one elements. For any $r \in R$ we can say that the only neighbourhood R of r contains entire A. Because there are more than one elements in A, the only neighbourhood R of r contains at least one element of A other than r. Therefore, every $r \in R$ is a cluster point of A. Hence, R is the set of cluster points of A. Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R with more than none elements. Hence, R is the set of cluster points of these sets. ## \mathcal{D} -topology For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R Therefore, every subset of R is a \mathcal{D} -open set. Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p. Now, let A be any subset of R. Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset . Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R. Hence, \emptyset is the set of cluster points of these sets. #### NOTE: In the context of indiscrete topology \mathcal{I} its worth mentioning the case of a singleton case. For any $p \in R$, consider the singleton subset $\{p\}$ of R. We can say that the only \mathcal{I} -neighbourhood R of p CANNOT contain any point of $\{p\}$ other than p, hence p cannot be a cluster point of $\{p\}$. Now for every $r \in R - \{p\}$ clearly the \mathcal{I} -neighbourhood R of r contians member p of $\{p\}$ which is certainly differnt from r, hence every $r \in R - \{p\}$ is a cluster point of $\{p\}$. 4. Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X and $p \in (X - F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$ ## **Proof:** Here, F is \mathcal{T} -closed subset of X and $p \in (X - F)$ Therefore, p cannot be a cluster point of F as every closed set must contain all its cluster points. Therefore, there must be at least one T-neighbourhood N of p such that $$N \cap F = \emptyset$$ 5. Let (X, \mathcal{T}) be a topological space. Find the set of all the cluster points of the empty subset of X #### Answer: As the empty set does not contain any element, no neighbourhood of any point of X can contain a point of the empty set. Therefore the empty set has no cluster point. Hence the empty set itself is its set of cluster points. 6. Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$ #### **Proof:** Suppose A is a T closed subset of X. If $p \in A'$ then p is cluster point of A. Therefore, every neighbourhood of p contains at least one point of A other than p. If possible suppose $p \notin A$. Therefore $p \in X - A$. Since A is T-closed, its complement X - A is T-open. As $p \in X - A$, there is a T-neighbourhood N of p such that $$N \subset (X - A)$$ Therefore no point of A is contained in N, a neighbourhood of p. This contradicts the fact that p is a cluster of A. Therefore our supposition $p \notin A$ is wrong. Hence, $$p \in A' \Rightarrow p \in A$$. Therefore, if A is closed then $$A' \subset A$$ Conversely suppose $A' \subset A$. Now to prove that A is T-closed we shall show that X - A is T-open. If $p \in X - A$ then $p \notin A$. Since $A' \subset A$ we have $p \notin A'$ also. Therefore p is not a cluster point of A. So there exists a T-neighbourhood N of p such that $$N \cap A = \emptyset$$ But then $$N \subset X - A$$ Therefore X - A is a neighbourhood of each of its points. This implies that X - A is T-open. Hence, A is a T-closed set. 7. Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed #### **Proof:** Here (X,T) is a topological space and $A \subset X$. To prove that $A \cup A'$ is T-closed we shall prove that its complement $X - (A \cup A')$ is T-open. By the DeMorgan's law, we have $$X - (A \cup A') = (X - A) \cap (X - A')$$ Now, $$p \in [X - (A \cup A')] \Rightarrow p \in [(X - A) \cap (X - A')]$$ $$\Rightarrow p \in (X - A) \text{ and } p \in (X - A')$$ $$\Rightarrow p \notin A \text{ and } p \notin A'$$ Since $p \notin A'$, it is not a cluster point of A. Therefore there is a T-open neighbourhood U of p which does not contain any point of A other than p. As $p \notin A$, U does not contain any point of A. Therefore, $$U \subset X - A$$ Since, U is a T-open neighbourhood of p which does not contain any point of A, it follows that no point of U is a cluster point of A. Thus, U contains no points of A and no points of A' Therefore, $$U \subset X - A'$$ Therefore, $$U\subset [(X-A)\cap (X-A')]$$ Hence, $$U\subset [X-(A\cup A')]$$ Therefore $X-(A\cup A')$ contains a neighbourhood of each of its points. Consequently $X-(A\cup A')$ is T-open. Hence, $A\cup A'$ is T-closed. ## 8. Closure of a set #### Closure of a set Let (X,T) be a topological space and $A \subset X$. The smallest T-closed subset of X containing A is called the closure of A and it is generally denoted by A^- . 9. Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$. ## **Proof:** Here (X, \mathcal{T}) is a topological space and $A \subset X$. Now, $A \cup A'$ is a T-closed subset of X that contains A. As the closure A^- is the smallest T-closed subset of X which contains A we have $$A^- \subset (A \cup A')$$ - - - - (i) Next we show that $(A \cup A') \subset A^-$. If $p \in (A \cup A')$ then $p \in A$ or $p \in A'$. In case $p \in A$ we have $p \in A^-$ as $A \subset A^-$. Now if $p \in A'$ then p is a cluster point of A. Therefore every neighbourhood of p contains at least one point of A other than p. Since $A \subset A^-$ we can say that every neighbourhood of p contains at least one point of A^- also. Therefore p is a cluster point of A^- . As A^- is a T-closed set we have $p \in A^-$. Thus, $p \in A' \Rightarrow p \in A^-$. Since $A \subset A^-$ and $A' \subset A^-$ we get, $$(A \cup A') \subset A^- - - - - (ii)$$ From (i) and (ii) it follows that, $$A^- = A \cup A'$$ - 10. Determine which of the following subsets of \mathbb{R} are - (i) $\mathcal{U}\text{-closed}$ (ii) $\mathcal{D}\text{-closed}$ (iii) $\mathcal{I}\text{-closed}$ - (a) \mathcal{R} (b) $\left\{\frac{1}{n}/n \in J^+\right\}$ (c) $\left\{-\frac{1}{n}/n \in J^+\right\}$ (d) the set J of all integers # \mathcal{U} -topology - $\overline{(1)}$ We have, R' = R. Hence R is \mathcal{U} -closed. - (2) The set of cluster points of $A = \left\{\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ Since, $0 \notin A$, A is not \mathcal{U} -closed. - (3) The set of cluster points of $A = \left\{-\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ Since, $0 \notin A$, A is not \mathcal{U} -closed. - (4) The set of cluster points of J is \emptyset . Hence, J is not \mathcal{U} -closed. # \mathcal{I} -topology For R, we have the indiscrete topology \mathcal{I} given by $\mathcal{I} = \{\emptyset, R\}$ Therefore, the only non-empty \mathcal{I} -open set is R. Therefore for every real number p there is only one \mathcal{I} -neighbourhood of p that is R. Now, let A is a subset of R with more than one elements. For any $r \in R$ we can say that the only neighbourhood R of r contains entire A. Because there are more than one elements in A, the only neighbourhood R of r contains at least one element of A other than r. Therefore, every $r \in R$ is a cluster point of A. Hence, R is the set of cluster points of A. Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R with more than none elements. Hence, R is the set of cluster points of these sets. Hence, R is \mathcal{I} -closed and rest of these sets are not \mathcal{I} -closed as none them contains all their cluster points. ## \mathcal{D} -topology For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R Therefore, every subset of R is a \mathcal{D} -open set. Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p. Now, let A be any subset of R. Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset . Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R. Therefore, \emptyset is the set of cluster points of these sets. Hence, all these sets are \mathcal{D} -closed. ## 11. Find \mathcal{U} -closures of the sets \mathbb{R} and \emptyset . $$R^- = R$$ and $\emptyset = \emptyset$ #### 12. Dense Set: #### Dense Set: Let (X,T) be s topological space. A subset A of X is said to be dense in (X,T) if $$A^- = X$$ ### 13. Interior Point ## **Interior Point** Let (X,T) be s topological space and $A \subset X$. A point $p \in X$ is said to be T-interior point of A if A is a T-neighbourhood of p. ### 14. Interior #### Interior Let (X,T) be s topological space and $A \subset X$. The set of all the T-interior points of A is called the interior of A which is generally denoted by IntA. - 15. Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following - (i) $IntA \subset A$ - (ii) IntA is a \mathcal{T} -open set - (iii) A is \mathcal{T} -open iff IntA = A - (iv) IntA is the largest open subset of A - (i) To Prove : $IntA \subset A$ If $p \in IntA$ then p is an interior point of A. Therefore these is some T-open subset, say G, of X such that $$p \in G \subset A$$ Therfore, $$p \in IntA \Rightarrow p \in A$$ Hence, $$IntA \subset A$$ (ii) To Prove : IntA is a \mathcal{T} -open set If $p \in IntA$ then p is an interior point of A. Therefore these is some T-open subset, say G, of X such that $$p \in G \subset A$$ Now, for each $x \in G$ we have $x \in G \subset A$ it follows that each point of G is an interior point of A. Therefore, $$G \subset IntA$$ Therefore, for each $p \in IntA$, there is some T-open subset of X such that $$p \in G \subset IntA$$ This implies that intA is a T-neighbourhood of each of its points. Hence IntA is T-open. ## (iii) To Prove : A is \mathcal{T} -open iff IntA = A First we suppose that A is T-open. At (i) we have already proved that $$IntA \subset A - - - (1)$$ Now, as A is T-open for each $p \in A$ these is some T-open subset, say G, of X such that $$p \in G \subset A$$. Therefore each $p \in A$ is an interior point of A. therefore $$p \in A \Rightarrow p \in IntA$$ Therefore, $$A \subset IntA - - - (2)$$ Form (1) and (2) it follows that IntA = A. Thus, tf A is \mathcal{T} -open then IntA = A. Conversely suppose, IntA = A. If $p \in A$ then $p \in IntA$. Therefore there is some T-open subset G of X such that $$p \in G \subset A$$ Therefore, A is a neighbourhood of each of its points. Hence A is open whenever IntA = A. # (iv) To Prove : IntA is the largest open subset of A At (i) we have already proved that $IntA \subset A$ and at (ii) we have proved that IntA is a T-open set. Now let us prove that IntA is the largest among all T-open subsets of A. Let B be any T-open subset of A. Then B is a T-neighbourhood of each of its points. Therefore, if $p \in B$ then there is some T-open set G such that $$p \in G \subset B$$ Since, $B \subset A$, we have $$p \in G \subset A$$ Therefore each $p \in B$ is an interior point of A, hence $p \in IntA$. Thus, $$p \in B \Rightarrow p \in IntA$$ Therefore, $$B \subset IntA$$ Hence, IntA is the largest open subset of A. ### 16. Continuous function ## Continuous function: Let (X,T) and (Y,ψ) be topological spaces. A function $f:X\to Y$ is called $T-\psi$ -continuous if $f^{-1}(G)$ is T-open in X whenever G is ψ -open in Y 17. For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is \mathcal{T} - Ψ continuous #### **Answer:** For any Ψ -open subset G of Y we have $$f^{-1}(G) = egin{cases} X & ; & ext{if } 2 \in G \\ \emptyset & ; & ext{if } 2 otin G \end{cases}$$ Since, X and \emptyset both are T-open, we can say that $f^{-1}(G)$ is T-open whenever G is Ψ -open. Hence, f is $T-\Psi$ -continuous. 18. If (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent (a) The mapping f is continuous (b) The inverse image of f of every Ψ -closed set is T-closed set (c) If $x \in X$ then inverse image of every Ψ -neighbourhood of f(x) is a T-neighbourhood of x (d) If $x \in X$ and N is a Ψ -neighbourhood of f(x), then there is a T-neighbourhood M of x such that $f(M) \subset N$ (e) If $A \subset X$, then $f(A^-) \subset f(A)^-$ Here, (X, \mathcal{T}) and (Y, Ψ) are topological spaces. To prove the equivalence of the given statements we shall prove the following one by one. $$(a)\Rightarrow(c),\ (c)\Rightarrow(d),\ (d)\Rightarrow(e),\ (e)\Rightarrow(b),\ (b)\Rightarrow(a)$$ To prove $(a) \Rightarrow (c)$ We assume that $f: X \to Y$ is $T - \Psi$ -continuous on X. Now, for any $x \in X$ we have $f(x) \in Y$. Let N be any Ψ -neighbourhood of f(x). Therefore, for Ψ -open subset, say G, of Y we have $$f(x) \in G \subset N$$ Therefore, $$x \in f^{-1}(G) \subset f^{-1}(N)$$ We have, Since f is $T - \Psi$ -continuous and G is Ψ -open in Y, the set $f^{-1}(G)$ is T-open in X. Therefore, $f^{-1}(N)$ is a T-neighbourhood of x. To prove $(c) \Rightarrow (d)$ We assume that, if $x \in X$ then inverse image of every Ψ -neighbourhood of f(x) is a \mathcal{T} -neighbourhood of x. If we take $M = f^{-1}(N)$ then $f(M) \subset N$. Thus, M is a T-neighbourhood of x such that $f(M) \subset N$ To prove $(d) \Rightarrow (e)$ We assume that, if $x \in X$ and N is a Ψ -neighbourhood of f(x), then there is a \mathcal{T} -neighbourhood M of x such that $f(M) \subset N$. Now, consider a subset A of X. As $A^- = A \cup A'$, we have, $$f(A^-) = f(A \cup A') = f(A) \cup f(A')$$ Therefore, to show that $f(A^-) \subset f(A)^-$, it is sufficient to show that $$f(A) \subset f(A)^-$$ and $f(A') \subset f(A)^-$ Since, $f(A)^- = f(A) \cup (f(A))'$ it is clear that $$f(A) \subset f(A)^- - - - (1)$$ Next, to show that $f(A') \subset f(A)^-$, consider any $y \in f(A')$. Clearly there is some $x \in A'$ such that f(x) = y. Let N be a Ψ -neighbourhood of f(x). By our assumption there is a T-neighbourhood M of x such that $f(M) \subset N$. As $x \in A'$, it is a cluster point of A. Therefore, the T-neighbourhood M of x contains at least one point of A other than x. Therefore, f(M) contains at less one point of f(A). As $f(M) \subset N$, it follows that N contains at least one point of f(A), which is either f(x) or OTHER THAN f(x). As N is an arbitrary Ψ -neighbourhood of f(x), it follows that f(x) is either a member of f(A) or a cluster point of f(A). Therefore, $$f(x) \in f(A) \cup f(A)'$$ Therefore, $$f(x) \in f(A)^-$$ As y = f(x), we have $$y \in f(A') \Rightarrow y \in f(A)^-$$ Therefore. $$f(A') \subset f(A)^- - - - (2)$$ From (1) and (2) it follows that, $$f(A) \cup f(A') \subset f(A)^-$$ Therefore, $$f(A^-) \subset f(A)^-$$ To prove $(e) \Rightarrow (b)$ We assume that if $A \subset X$ then $f(A^-) \subset f(A)^-$ Let F be a Ψ -closed subset of Y. Therefore, $F^- = F$. We shall show that the inverse image $f^{-1}(F)$ contains all its cluster points. If p is a cluster point of $f^{-1}(F)$ then $p \in (f^{-1}(F))^-$. Therefore $$f(p) \in f\left[\left(f^{-1}(F)\right)^{-}\right]$$ ---- (i) Now from our assumption $f(A^-) \subset f(A)^-$ we get $$f\left[\left(f^{-1}(F)\right)^{-}\right]\subset\left[f\left(f^{-1}(F)\right)\right]^{-}$$ ---- (ii) From (i) and (ii) it follows that $$f(p) \in \left[f\left(f^{-1}(F)\right)\right]^{-}$$ But $$\left[f\left(f^{-1}(F)\right)\right]^-\subset F^-=F$$ Therefore $$f(p) \in F$$ Hence $$p \in f^{-1}(F)$$ Thus, $f^{-1}(F)$ contains all its cluster points. Hence, $f^{-1}(F)$ is T-closed whenever F is Ψ -closed. $\frac{\text{To prove }(b)\Rightarrow(a)}{\text{We assume that }f^{-1}(F)\text{ is T-closed whenever F is a Ψ-closed set.}}$ To show that $f: X \to Y$ is $T - \Psi$ -continuous, consider a Ψ -open subset G of Y. Therefore, F = Y - G is a Ψ -closed subset of Y. By our assumption $f^{-1}(F)$ is T-closed. Now, $$f^{-1}(G) = f^{-1}(Y - F)$$ = $f^{-1}(Y) - f^{-1}(F)$ $f^{-1}(G) = X - f^{-1}(F)$ As $f^{-1}(F)$ is T-closed subset of X, the set $f^{-1}(G)$ is T-open subset of X. Thus, $f^{-1}(G)$ is T-open subset of X whenever G is Ψ -open subset of Y. Hence, f is $T - \Psi$ -continuous. 19. Let (X, \mathcal{T}) and (Y, Ψ) be topological spaces and f be a mapping from X into Y. Prove that if $f(A^-) \subset f(A)^-$ for $A \subset X$, then the inverse image of f of every Ψ -closed set is \mathcal{T} -closed set. Here, (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y. We assume that if $A \subset X$ then $f(A^-) \subset f(A)^-$ Let F be a Ψ -closed subset of Y. We shall show that the inverse image $f^{-1}(F)$ contains all its cluster points. If p is a cluster point of $f^{-1}(F)$ then $p \in (f^{-1}(F))^-$. Therefore $$f(p) \in f\left[\left(f^{-1}(F)\right)^{-}\right]$$ ---- (i) Now from our assumption $f(A^-) \subset f(A)^-$ we get $$f\left[\left(f^{-1}(F)\right)^{-}\right]\subset\left[f\left(f^{-1}(F)\right)\right]^{-}$$ ---- (ii) From (i) and (ii) it follows that $$f(p) \in \left[f\left(f^{-1}(F)\right) \right]^-$$ But $$f\left[f^{-1}(F)\right]^- \subset F^- = F$$ Therefore $$f(p) \in F$$ Hence $$p \in f^{-1}(F)$$ Thus, $f^{-1}(F)$ contains all its cluster points. Hence, $f^{-1}(F)$ is T-closed whenever F is Ψ -closed. 20. 21. 22. 23. ### 24. Bicontinuous function #### Bicontinuous function: Let (X,T) and (Y,Ψ) be topological spaces. A function f is said to be Bicontinuous if it is a $T-\Psi$ -continuous function and f(G) is Ψ -open whenever G is T-open in X. ## 25. Homeomorphism ## Homeomorphism: Let (X,T) and (Y,Ψ) be topological spaces. A function $f:X\to Y$ is said to be a $T-\Psi$ -homeomorphism from X onto Y if it is a bicontinuous function which is one-one and X onto Y. ## 26. Homeomorphic Topological Spaces Two topological spaces (X, T) and (Y, Ψ) are said to be Homeomorphic if there is a function $f: X \to Y$ which is a $T - \Psi$ -homeomorphism form X onto Y. # 27. Topologically Equivalent Spaces #### Topologically Equivalent Spaces: Two topological spaces (X,T) and (Y,Ψ) are said to be topologically equivalent if they are homeomorphic to each other. # 28. Topological Invariant Property #### Topological Invariant Property: A property of a topological space (X,T) is said to be a topological property if it is also possese by every topological spaces homeomorphic to (X,T).