T.Y.B.Sc. : Semester - V (CBCS)

US05CMTH24

Metric Spaces and Topological Spaces

[Syllabus effective from June, 2020]

Study Material Prepared by:
Mr. Rajesh P. Solanki
Department of Mathematics and Statistics
V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

US05CMTH24- UNIT: III

1. Cluster point

Cluster Point:

Let (X,T) be a topological space and $A \subset X$. A point p in X is said to be a cluster point of A if every T-neighbourhood of p contains at least one point of A other than p. i.e.

NOTE:

The definition implies that if p is a cluster point of A and N is a neighbourhood of p then

$$(A - \{p\}) \cap N \neq \emptyset$$

2. Find the set of cluster points of (1,2) in usual topology and discrete topology of $\mathbb R$

Answer:

\mathcal{U} -topology

Here, (1,2) is a subset of R with usual topology, \mathcal{U} -topology.

First we show that each point of [1,2] is a cluster point of (1,2)

Let r be any positive number.

Now, open interval (1, 1 + r), contains at least one point of (1, 2) other than 1. So 1 is a cluster point of (1, 2). Also, (2 - r, 2) contains at least one point of (1, 2) other than 2. So 2 is a cluster point of (1, 2).

Also, for any $c \in (1,2)$, the interval (c-r,c+r) contains at least one point of (1,2) other than c. So c is a cluster point of (1,2).

Thus, each point in [1,2] is a cluster point of (1,2)

Finally, we show that no point out side [1, 2] can be a cluster point of (1, 2)

Let $x \notin [1,2]$. If 2 < x then we can choose some sufficiently small $\epsilon > 0$ so that

$$2 < x - \epsilon < x$$

Therefore,

$$(1,2)\cap(x-\epsilon,x+\epsilon)=\emptyset$$

So, x cannot be a cluster point of (1, 2).

Similarly it can be shown that if x < 1 then also x cannot be a cluster point of (1,2) the set of all cluster points of (1,2) is [1,2]

\mathcal{D} -topology

For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R

Therefore, every subset of R is a \mathcal{D} -open set.

Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p.

Now, let A be any subset of R.

Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset .

Therefore, the set of cluster points of (1, 2) is also \emptyset .

- 3. Find the sets of cluster points of the following subsets of \mathbb{R}
 - (1) R (2) $\left\{\frac{1}{n}/n \in J^+\right\}$ (3) $\left\{-\frac{1}{n}/n \in J^+\right\}$
 - (4) the set \hat{J} of all integers.

relative to

(i) U-topology (ii) I-topology (iii) D-topology

\mathcal{U} -topology

- $\overline{(1)}$ The set of cluster points of R is R
- (2) The set of cluster points of $\left\{\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$
- (3) The set of cluster points of $\left\{-\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$
- (4) The set of cluster points of \hat{J} is \emptyset

\mathcal{I} -topology

 $\overline{\text{For }R, \text{ we have the indiscrete topology }\mathcal{I}} \text{ given by } \mathcal{I} = \{\emptyset, R\}$

Therefore, the only non-empty \mathcal{I} -open set is R.

Therefore for every real number p there is only one \mathcal{I} -neighbourhood of p that is R.

3

Now, let A is a subset of R with more than one elements. For any $r \in R$ we can say that the only neighbourhood R of r contains entire A.

Because there are more than one elements in A, the only neighbourhood R of r contains at least one element of A other than r.

Therefore, every $r \in R$ is a cluster point of A. Hence, R is the set of cluster points of A.

Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R with more than none elements. Hence, R is the set of cluster points of these sets.

\mathcal{D} -topology

For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R

Therefore, every subset of R is a \mathcal{D} -open set.

Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p.

Now, let A be any subset of R.

Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset .

Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R. Hence, \emptyset is the set of cluster points of these sets.

NOTE:

In the context of indiscrete topology \mathcal{I} its worth mentioning the case of a singleton case. For any $p \in R$, consider the singleton subset $\{p\}$ of R. We can say that the only \mathcal{I} -neighbourhood R of p CANNOT contain any point of $\{p\}$ other than p, hence p cannot be a cluster point of $\{p\}$.

Now for every $r \in R - \{p\}$ clearly the \mathcal{I} -neighbourhood R of r contians member p of $\{p\}$ which is certainly differnt from r, hence every $r \in R - \{p\}$ is a cluster point of $\{p\}$.

4. Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X and $p \in (X - F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$

Proof:

Here, F is \mathcal{T} -closed subset of X and $p \in (X - F)$

Therefore, p cannot be a cluster point of F as every closed set must contain all its cluster points.

Therefore, there must be at least one T-neighbourhood N of p such that

$$N \cap F = \emptyset$$

5. Let (X, \mathcal{T}) be a topological space. Find the set of all the cluster points of the empty subset of X

Answer:

As the empty set does not contain any element, no neighbourhood of any point of X can contain a point of the empty set. Therefore the empty set has no cluster point. Hence the empty set itself is its set of cluster points.

6. Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$

Proof:

Suppose A is a T closed subset of X.

If $p \in A'$ then p is cluster point of A. Therefore, every neighbourhood of p contains at least one point of A other than p.

If possible suppose $p \notin A$. Therefore $p \in X - A$.

Since A is T-closed, its complement X - A is T-open.

As $p \in X - A$, there is a T-neighbourhood N of p such that

$$N \subset (X - A)$$

Therefore no point of A is contained in N, a neighbourhood of p.

This contradicts the fact that p is a cluster of A. Therefore our supposition $p \notin A$ is wrong.

Hence,

$$p \in A' \Rightarrow p \in A$$

. Therefore, if A is closed then

$$A' \subset A$$

Conversely suppose $A' \subset A$. Now to prove that A is T-closed we shall show that X - A is T-open.

If $p \in X - A$ then $p \notin A$. Since $A' \subset A$ we have $p \notin A'$ also.

Therefore p is not a cluster point of A. So there exists a T-neighbourhood N of p such that

$$N \cap A = \emptyset$$

But then

$$N \subset X - A$$

Therefore X - A is a neighbourhood of each of its points. This implies that X - A is T-open.

Hence, A is a T-closed set.

7. Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed

Proof:

Here (X,T) is a topological space and $A \subset X$. To prove that $A \cup A'$ is T-closed we shall prove that its complement $X - (A \cup A')$ is T-open.

By the DeMorgan's law, we have

$$X - (A \cup A') = (X - A) \cap (X - A')$$

Now,

$$p \in [X - (A \cup A')] \Rightarrow p \in [(X - A) \cap (X - A')]$$
$$\Rightarrow p \in (X - A) \text{ and } p \in (X - A')$$
$$\Rightarrow p \notin A \text{ and } p \notin A'$$

Since $p \notin A'$, it is not a cluster point of A. Therefore there is a T-open neighbourhood U of p which does not contain any point of A other than p. As $p \notin A$, U does not contain any point of A. Therefore,

$$U \subset X - A$$

Since, U is a T-open neighbourhood of p which does not contain any point of A, it follows that no point of U is a cluster point of A.

Thus, U contains no points of A and no points of A' Therefore,

$$U \subset X - A'$$

Therefore,

$$U\subset [(X-A)\cap (X-A')]$$

Hence,

$$U\subset [X-(A\cup A')]$$

Therefore $X-(A\cup A')$ contains a neighbourhood of each of its points. Consequently $X-(A\cup A')$ is T-open. Hence, $A\cup A'$ is T-closed.

8. Closure of a set

Closure of a set

Let (X,T) be a topological space and $A \subset X$. The smallest T-closed subset of X containing A is called the closure of A and it is generally denoted by A^- .

9. Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$.

Proof:

Here (X, \mathcal{T}) is a topological space and $A \subset X$.

Now, $A \cup A'$ is a T-closed subset of X that contains A. As the closure A^- is the smallest T-closed subset of X which contains A we have

$$A^- \subset (A \cup A')$$
 - - - - (i)

Next we show that $(A \cup A') \subset A^-$. If $p \in (A \cup A')$ then $p \in A$ or $p \in A'$.

In case $p \in A$ we have $p \in A^-$ as $A \subset A^-$.

Now if $p \in A'$ then p is a cluster point of A. Therefore every neighbourhood of p contains at least one point of A other than p. Since $A \subset A^-$ we can say that every neighbourhood of p contains at least one point of A^- also.

Therefore p is a cluster point of A^- . As A^- is a T-closed set we have $p \in A^-$.

Thus, $p \in A' \Rightarrow p \in A^-$. Since $A \subset A^-$ and $A' \subset A^-$ we get,

$$(A \cup A') \subset A^- - - - - (ii)$$

From (i) and (ii) it follows that,

$$A^- = A \cup A'$$

- 10. Determine which of the following subsets of \mathbb{R} are
 - (i) $\mathcal{U}\text{-closed}$ (ii) $\mathcal{D}\text{-closed}$ (iii) $\mathcal{I}\text{-closed}$
 - (a) \mathcal{R} (b) $\left\{\frac{1}{n}/n \in J^+\right\}$ (c) $\left\{-\frac{1}{n}/n \in J^+\right\}$ (d) the set J of all integers

\mathcal{U} -topology

- $\overline{(1)}$ We have, R' = R. Hence R is \mathcal{U} -closed.
- (2) The set of cluster points of $A = \left\{\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ Since, $0 \notin A$, A is not \mathcal{U} -closed.
- (3) The set of cluster points of $A = \left\{-\frac{1}{n}/n \in J^+\right\}$ is $\{0\}$ Since, $0 \notin A$, A is not \mathcal{U} -closed.
- (4) The set of cluster points of J is \emptyset . Hence, J is not \mathcal{U} -closed.

\mathcal{I} -topology

For R, we have the indiscrete topology \mathcal{I} given by $\mathcal{I} = \{\emptyset, R\}$

Therefore, the only non-empty \mathcal{I} -open set is R.

Therefore for every real number p there is only one \mathcal{I} -neighbourhood of p that is R.

Now, let A is a subset of R with more than one elements. For any $r \in R$ we can say that the only neighbourhood R of r contains entire A.

Because there are more than one elements in A, the only neighbourhood R of r contains at least one element of A other than r.

Therefore, every $r \in R$ is a cluster point of A. Hence, R is the set of cluster points of A.

Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R with more than none elements. Hence, R is the set of cluster points of these sets.

Hence, R is \mathcal{I} -closed and rest of these sets are not \mathcal{I} -closed as none them contains all their cluster points.

\mathcal{D} -topology

For R, we have the discrete topology \mathcal{D} defined as the collection of all the subsets of R

Therefore, every subset of R is a \mathcal{D} -open set.

Therefore for every real number p, every subset of R containing p is a \mathcal{D} -neighbourhood of p. Consequently $\{p\}$ is a \mathcal{D} -neighbourhood of p.

Now, let A be any subset of R.

Since, for any $p \in R$, a \mathcal{D} -neighbourhood $\{p\}$ of p cannot contian any point of A, possibly other than p, we conclude that any real number p cannot be a cluster point of A. Hence, the set cluster points of every subset of R is \emptyset .

Now, each of R, $\left\{\frac{1}{n}/n \in J^+\right\}$, $\left\{-\frac{1}{n}/n \in J^+\right\}$ and J is a non-empty subset of R. Therefore, \emptyset is the set of cluster points of these sets. Hence, all these sets are \mathcal{D} -closed.

11. Find \mathcal{U} -closures of the sets \mathbb{R} and \emptyset .

$$R^- = R$$
 and $\emptyset = \emptyset$

12. Dense Set:

Dense Set:

Let (X,T) be s topological space. A subset A of X is said to be dense in (X,T) if

$$A^- = X$$

13. Interior Point

Interior Point

Let (X,T) be s topological space and $A \subset X$. A point $p \in X$ is said to be T-interior point of A if A is a T-neighbourhood of p.

14. Interior

Interior

Let (X,T) be s topological space and $A \subset X$. The set of all the T-interior points of A is called the interior of A which is generally denoted by IntA.

- 15. Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following
 - (i) $IntA \subset A$
 - (ii) IntA is a \mathcal{T} -open set
 - (iii) A is \mathcal{T} -open iff IntA = A
 - (iv) IntA is the largest open subset of A
- (i) To Prove : $IntA \subset A$

If $p \in IntA$ then p is an interior point of A. Therefore these is some T-open subset, say G, of X such that

$$p \in G \subset A$$

Therfore,

$$p \in IntA \Rightarrow p \in A$$

Hence,

$$IntA \subset A$$

(ii) To Prove : IntA is a \mathcal{T} -open set

If $p \in IntA$ then p is an interior point of A. Therefore these is some T-open subset, say G, of X such that

$$p \in G \subset A$$

Now, for each $x \in G$ we have $x \in G \subset A$ it follows that each point of G is an interior point of A.

Therefore,

$$G \subset IntA$$

Therefore, for each $p \in IntA$, there is some T-open subset of X such that

$$p \in G \subset IntA$$

This implies that intA is a T-neighbourhood of each of its points. Hence IntA is T-open.

(iii) To Prove : A is \mathcal{T} -open iff IntA = A

First we suppose that A is T-open. At (i) we have already proved that

$$IntA \subset A - - - (1)$$

Now, as A is T-open for each $p \in A$ these is some T-open subset, say G, of X such that

$$p \in G \subset A$$

. Therefore each $p \in A$ is an interior point of A. therefore

$$p \in A \Rightarrow p \in IntA$$

Therefore,

$$A \subset IntA - - - (2)$$

Form (1) and (2) it follows that IntA = A.

Thus, tf A is \mathcal{T} -open then IntA = A.

Conversely suppose, IntA = A.

If $p \in A$ then $p \in IntA$. Therefore there is some T-open subset G of X such that

$$p \in G \subset A$$

Therefore, A is a neighbourhood of each of its points. Hence A is open whenever IntA = A.

(iv) To Prove : IntA is the largest open subset of A

At (i) we have already proved that $IntA \subset A$ and at (ii) we have proved that IntA is a T-open set. Now let us prove that IntA is the largest among all T-open subsets of A.

Let B be any T-open subset of A. Then B is a T-neighbourhood of each of its points.

Therefore, if $p \in B$ then there is some T-open set G such that

$$p \in G \subset B$$

Since, $B \subset A$, we have

$$p \in G \subset A$$

Therefore each $p \in B$ is an interior point of A, hence $p \in IntA$.

Thus,

$$p \in B \Rightarrow p \in IntA$$

Therefore,

$$B \subset IntA$$

Hence, IntA is the largest open subset of A.

16. Continuous function

Continuous function:

Let (X,T) and (Y,ψ) be topological spaces. A function $f:X\to Y$ is called $T-\psi$ -continuous if $f^{-1}(G)$ is T-open in X whenever G is ψ -open in Y

17. For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is \mathcal{T} - Ψ continuous

Answer:

For any Ψ -open subset G of Y we have

$$f^{-1}(G) = egin{cases} X & ; & ext{if } 2 \in G \\ \emptyset & ; & ext{if } 2
otin G \end{cases}$$

Since, X and \emptyset both are T-open, we can say that $f^{-1}(G)$ is T-open whenever G is Ψ -open. Hence, f is $T-\Psi$ -continuous.

18. If (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent

(a) The mapping f is continuous

(b) The inverse image of f of every Ψ -closed set is T-closed set

(c) If $x \in X$ then inverse image of every Ψ -neighbourhood of f(x) is a T-neighbourhood of x

(d) If $x \in X$ and N is a Ψ -neighbourhood of f(x), then there is a T-neighbourhood M of x such that $f(M) \subset N$

(e) If $A \subset X$, then $f(A^-) \subset f(A)^-$

Here, (X, \mathcal{T}) and (Y, Ψ) are topological spaces. To prove the equivalence of the given statements we shall prove the following one by one.

$$(a)\Rightarrow(c),\ (c)\Rightarrow(d),\ (d)\Rightarrow(e),\ (e)\Rightarrow(b),\ (b)\Rightarrow(a)$$

To prove $(a) \Rightarrow (c)$

We assume that $f: X \to Y$ is $T - \Psi$ -continuous on X.

Now, for any $x \in X$ we have $f(x) \in Y$. Let N be any Ψ -neighbourhood of f(x). Therefore, for Ψ -open subset, say G, of Y we have

$$f(x) \in G \subset N$$

Therefore,

$$x \in f^{-1}(G) \subset f^{-1}(N)$$

We have, Since f is $T - \Psi$ -continuous and G is Ψ -open in Y, the set $f^{-1}(G)$ is T-open in X.

Therefore, $f^{-1}(N)$ is a T-neighbourhood of x.

To prove $(c) \Rightarrow (d)$

We assume that, if $x \in X$ then inverse image of every Ψ -neighbourhood of f(x) is a \mathcal{T} -neighbourhood of x. If we take $M = f^{-1}(N)$ then $f(M) \subset N$.

Thus, M is a T-neighbourhood of x such that $f(M) \subset N$

To prove $(d) \Rightarrow (e)$

We assume that, if $x \in X$ and N is a Ψ -neighbourhood of f(x), then there is a \mathcal{T} -neighbourhood M of x such that $f(M) \subset N$.

Now, consider a subset A of X. As $A^- = A \cup A'$, we have,

$$f(A^-) = f(A \cup A') = f(A) \cup f(A')$$

Therefore, to show that $f(A^-) \subset f(A)^-$, it is sufficient to show that

$$f(A) \subset f(A)^-$$
 and $f(A') \subset f(A)^-$

Since, $f(A)^- = f(A) \cup (f(A))'$ it is clear that

$$f(A) \subset f(A)^- - - - (1)$$

Next, to show that $f(A') \subset f(A)^-$, consider any $y \in f(A')$.

Clearly there is some $x \in A'$ such that f(x) = y. Let N be a Ψ -neighbourhood of f(x). By our assumption there is a T-neighbourhood M of x such that $f(M) \subset N$.

As $x \in A'$, it is a cluster point of A. Therefore, the T-neighbourhood M of x contains at least one point of A other than x. Therefore, f(M) contains at less one point of f(A). As $f(M) \subset N$, it follows that N contains at least one point of f(A), which is either f(x) or OTHER THAN f(x).

As N is an arbitrary Ψ -neighbourhood of f(x), it follows that f(x) is either a member of f(A) or a cluster point of f(A). Therefore,

$$f(x) \in f(A) \cup f(A)'$$

Therefore,

$$f(x) \in f(A)^-$$

As y = f(x), we have

$$y \in f(A') \Rightarrow y \in f(A)^-$$

Therefore.

$$f(A') \subset f(A)^- - - - (2)$$

From (1) and (2) it follows that,

$$f(A) \cup f(A') \subset f(A)^-$$

Therefore,

$$f(A^-) \subset f(A)^-$$

To prove $(e) \Rightarrow (b)$

We assume that if $A \subset X$ then $f(A^-) \subset f(A)^-$

Let F be a Ψ -closed subset of Y. Therefore, $F^- = F$.

We shall show that the inverse image $f^{-1}(F)$ contains all its cluster points.

If p is a cluster point of $f^{-1}(F)$ then $p \in (f^{-1}(F))^-$.

Therefore

$$f(p) \in f\left[\left(f^{-1}(F)\right)^{-}\right]$$
 ---- (i)

Now from our assumption $f(A^-) \subset f(A)^-$ we get

$$f\left[\left(f^{-1}(F)\right)^{-}\right]\subset\left[f\left(f^{-1}(F)\right)\right]^{-}$$
 ---- (ii)

From (i) and (ii) it follows that

$$f(p) \in \left[f\left(f^{-1}(F)\right)\right]^{-}$$

But

$$\left[f\left(f^{-1}(F)\right)\right]^-\subset F^-=F$$

Therefore

$$f(p) \in F$$

Hence

$$p \in f^{-1}(F)$$

Thus, $f^{-1}(F)$ contains all its cluster points.

Hence, $f^{-1}(F)$ is T-closed whenever F is Ψ -closed.

 $\frac{\text{To prove }(b)\Rightarrow(a)}{\text{We assume that }f^{-1}(F)\text{ is T-closed whenever F is a Ψ-closed set.}}$

To show that $f: X \to Y$ is $T - \Psi$ -continuous, consider a Ψ -open subset G of Y.

Therefore, F = Y - G is a Ψ -closed subset of Y. By our assumption $f^{-1}(F)$ is T-closed.

Now,

$$f^{-1}(G) = f^{-1}(Y - F)$$

= $f^{-1}(Y) - f^{-1}(F)$
 $f^{-1}(G) = X - f^{-1}(F)$

As $f^{-1}(F)$ is T-closed subset of X, the set $f^{-1}(G)$ is T-open subset of X.

Thus, $f^{-1}(G)$ is T-open subset of X whenever G is Ψ -open subset of Y.

Hence, f is $T - \Psi$ -continuous.

19. Let (X, \mathcal{T}) and (Y, Ψ) be topological spaces and f be a mapping from X into Y. Prove that if $f(A^-) \subset f(A)^-$ for $A \subset X$, then the inverse image of f of every Ψ -closed set is \mathcal{T} -closed set.

Here, (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y. We assume that if $A \subset X$ then $f(A^-) \subset f(A)^-$

Let F be a Ψ -closed subset of Y. We shall show that the inverse image $f^{-1}(F)$ contains all its cluster points.

If p is a cluster point of $f^{-1}(F)$ then $p \in (f^{-1}(F))^-$.

Therefore

$$f(p) \in f\left[\left(f^{-1}(F)\right)^{-}\right]$$
 ---- (i)

Now from our assumption $f(A^-) \subset f(A)^-$ we get

$$f\left[\left(f^{-1}(F)\right)^{-}\right]\subset\left[f\left(f^{-1}(F)\right)\right]^{-}$$
 ---- (ii)

From (i) and (ii) it follows that

$$f(p) \in \left[f\left(f^{-1}(F)\right) \right]^-$$

But

$$f\left[f^{-1}(F)\right]^- \subset F^- = F$$

Therefore

$$f(p) \in F$$

Hence

$$p \in f^{-1}(F)$$

Thus, $f^{-1}(F)$ contains all its cluster points. Hence, $f^{-1}(F)$ is T-closed whenever F is Ψ -closed.

20.

21.

22.

23.

24. Bicontinuous function

Bicontinuous function:

Let (X,T) and (Y,Ψ) be topological spaces. A function f is said to be Bicontinuous if it is a $T-\Psi$ -continuous function and f(G) is Ψ -open whenever G is T-open in X.

25. Homeomorphism

Homeomorphism:

Let (X,T) and (Y,Ψ) be topological spaces. A function $f:X\to Y$ is said to be a $T-\Psi$ -homeomorphism from X onto Y if it is a bicontinuous function which is one-one and X onto Y.

26. Homeomorphic Topological Spaces

Two topological spaces (X, T) and (Y, Ψ) are said to be Homeomorphic if there is a function $f: X \to Y$ which is a $T - \Psi$ -homeomorphism form X onto Y.

27. Topologically Equivalent Spaces

Topologically Equivalent Spaces:

Two topological spaces (X,T) and (Y,Ψ) are said to be topologically equivalent if they are homeomorphic to each other.

28. Topological Invariant Property

Topological Invariant Property:

A property of a topological space (X,T) is said to be a topological property if it is also possese by every topological spaces homeomorphic to (X,T).