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1. Connected and Disconnected Topological Spaces.

Connected and Disconnected Topological Spaces
A topological space (X, T) is said to be a disconnected if exist two non-empty subsets A and
B of X with the following three properties

(1) AUB=X
(2) AnB=¢
(3) ANB~ =0

If the space (X, T") is not disconnected then it is called Connected.

NOTE:
By the definition it follows that a topological space (X, T) is connected if it is IMPOSSIBLE
to find non-empty subsets A and B which satisfy above three properties.

2. Prove that if a topological space (X,T) has a non-empty proper subset
A that is both T-open and T-closed, then (X,T) is disconnected.

Proof:
Suppose, a topological space (X,T) has a non-empty proper subset A which is T-open and
T-closed both.

Define, B = X — A. Clearly B is also a non-empty proper subset of X such that,
ANB=0---(1)

and
AUB=X---(2)

As A is a T-closed subset of X, we have A~ = A. Therefore from (1) we get,
A"NB=0---(3)

Also, A is T-open and B = X — A implies that B is T-closed. Hence B~ = B,
Therefore from (1) we get,
ANB =0---(4)

Thus we have two non-empty subsets of A and B of X with the properties at (2), (3) and (4).



Hence, (X, T) is a disconnected space.

3. Prove that if (X,T) is disconnected then there is a nonempty proper
subset of X that is both T-open and T-closed.

Proof:
Let (X, T) be a disconnected space. Therefore there exist two non-empty subsets A and B of
X such that,

AUB=X, ANB=0, ANB =0

Since, A C A~ and A~ N B = @ it follows that
ANB=0

Therefore, A is a proper subset of X as A and B are non-empty subsets of X and A =X — B.
As ANB~ =0 and AU B~ = X, we have,

A=X—B~
Therefore, A is a T-open subset of X as B~ is a T-closed subset of X.
Also, as A N B =0 and A~ U B = X we have,

B=X-A"

Therefore, B is a T-open subset of X as A~ is a T-closed subset of X.
Since A = X — B, it follows that A is T-closed also.

Thus, A is a non-empty proper subset of X which is T-open and T-closed both.

empty proper subset that is both 7-open and 7-closed.

4. Prove that a topological space (X,7) is disconnected iff X has a non- ‘

Proof can be given by using the proofs of above two theorems.

[ 5. Prove that every indiscrete space is connected. ]

Proof:
For any non-empty set X, the indiscrete topology is given by I = {0, X'}

Therefore, there is no PROPER. subset of X which is 7-open as well as I-closed.

Hence every indiscrete topology is connected.

6. Prove that discrete space that has more than one point is disconnected.




Proof:
A set with more than one elements always has atleast one non-empty proper subset.

Therefore, if a non-empty set X has more than one elements than its discrete topology D,
which is the family of all subsets of X, contains atleast one proper subset of X.

If A is a non-empty proper subset of X then A and its complement X — A both are D-
open.

Since, X — A is D-open A is D-closed also.
Therefore X has a proper subset which is D-open as well as D-closed.

Hence the discrete space is disconnected.

7. For X = {a,b,c} consider the topology T = {X,0,{a,b},{c}}. Is (X,T)
connected?

Answer:
Here, T = {X, 0, {a, b}, {c}} is a topology for X

The subsets {a, b} of X is T-opemn.
Also, {c} is T-open and {a, b} = X — {c}. Therefore, {a,b} is T-closed also.
Thus, the proper subset {a,b} of X is T-open as well as T-closed.

Hence X is disconnected relative to T.

[ 8. Bounded above subset of R

Bounded above subset of R
A subset A of R is said to be bounded above if there exists some fixed K € R such that

< K,Vze A

[ 9. Bounded below subset of R ]

Bounded below subset of R
A subset A of R is said to be bounded below if there exists some fixed K € R such that

K<z, Ve A



[ 10. Bounded subset of R

Bounded subset of R
A suset A of R is said to be bounded if there exists some fixed K, Ky € R such that

Ki€zxz<K,,VzecA

11. Least Upper Bound

Least Upper Bound
Let A be a bounded subset of E. A real number © is said to be the least upper bound of A if

(1) z < u, Vz € A and

(2) if v’ < u then there exists some y € A such that v’ < y < u.

The Least Upper Bound of a set is also known as the Supremum of A.
NOTE:

In other words we can say that the smallest member of the set of all the upper bounds of a
bounded above subset A of R is called the Least Upper Bound of A.

12. Greatest Lower Bound

Greatest Lower Bound
Let A be a bounded subset of R. A real number [ is said to be the greatest lower bound of A if

(1) I <z, Vz € A and
(2) if I < U then there exists some y € A such that [ <y <"

The Greatest Lower Bound of a set is also known as the Infimum of A.

NOTE:
In other words we can say that the greatest member of the set of all the lower bounds of a
bounded below subset A of R is called the Greatest Lower Bound of A.

13. State the Least Upper Bound property of R

Least Upper Bound property of R
Every non-empty subset of R which is bounded above has the least upper bound in R.




14. Prove that the space (R,U) is connected.

Proof:

Suppose that A is a non-empty proper subset of R which is Z{-open and I{/-closed both. Clearly
the complement R — A also is non-empty.

Take some py € R — A and ¢ € A. Clearly po # qo.

By the law of Trichotomy we have either py < g or po > go-

CASE 1: pg < g
Define,

M={gqeA/p<q}
As py < g9 and gy € A we have gy € M. Also, py is a lower bound of M.

Thus, M is a non-empty subset of R which is bounded below. By the Order Completeness of
R, M must have greatest lower bound in R. Let r; be the greatest lower bound of M.

If N is a U-neighbourhood of ry then there is some open interval (e, b) such that
1o € (a,b) CN
Since, 7o < b and 7y is the greatest lower bound of M there exists some g € M such that
ro<g<b

Therefore, ¢ € N. Thus every U-neighbourhood of ry contains a point of M. Since M C A it
follows that every U-neighbourhood of ry contains a point of A. Therefore, ro € A or 1o is a
cluster point of A, hence ry € A™. Since, A is U-closed, we have A~ = A. Therefore,

ro € A

As A is U-open also, 1y is an interior point of A. Therefore there is some open interval (ag, by)
such that
To € (Go, b[)) Cc A

Clearly (ag, 7o) C A. As rg is the greatest lower bound of M the open interval (ap, 7o) cannot
contain any point of M. Therefore we cannot have py < ry because in that case infinitely many
members of (ag, o) will be in M. Hence we have

To < Po
Also py is a lower bound of M and ry is the greatest lower bound of M. This implies that

Do K To

Thus we must have
Do=To



This is a contradiction as py € R — A and ¢, € A.

Therefore our supposition is wrong. Hence A= Ror A = 0.
CASE 2: ¢ < pp
Define,

M={q€A/q<po}
As go < po and go € A we have gy € M. Also, pg is an upper bound of M.

Thus, M is a non-empty subset of R which is bounded above. By the Order Completeness of
R, M must have least upper bound in R. Let ry be the least upper bound of M.

If N is a U-neighbourhood of 7, then there is some open interval (a, b) such that
0 € (a,b) C N
Since, a < ry and rq is the least upper bound of M there exists some ¢ € M such that
a<qg<To

Therefore, ¢ € N. Thus every U-neighbourhood of rg contains a point of M. Since M C A it
follows that every U-neighbourhood of r¢ contains a point of A. Therefore, 7o € A or rp is a
cluster point of A, hence ryp € A~. Since, A is U-closed, we have A~ = A. Therefore,

T(]E.A

As A is U-open also, 1y is an interior point of A. Therefore there is some open interval {ag, bo)
such that
Tp € (ag, bo) c A

Clearly (ro,b5) C A. As rg is the least upper bound of M the open interval (rg,by) cannot
contain any point of M. Therefore we cannot have ry < py because in that case infinitely many
members of (rg, bp) will be in M. Hence we have

Po < To
Also po is an upper bound of M and ry is the least upper bound of M. This implies that
To € Po

Thus we must have
Po=To

This is a contradiction as pp € R — A and g € A.
Therefore our supposition is wrong. Hence A= R or A = 0.

Thus, it is impossible to find a non-empty proper subset of R which is U-closed and U-open
both.

Hence, (R,U) is connected.



15. Assuming that connectedness is a topological property prove that (R,I)
and (R,G) are not homeomorphic where U is usual topology for R and G
is defined as follows
G € G if either G empty or it is a nonempty subset of R such that for
every p € G there is some H = {r € R/a < z < b} for a < b such that
pe HCG.

Proof:
We know that for ¢ < b each half-closed half-open interval [a,b) is G-open in R.

Now, consider the G-open subset [0,1) of B. We can express [0, 1) as follows,

- w- (Qeeo)u(0)

Therefore, R — [0,1) is a union of G-open sets, hence it is G-open. Therefore, [0, 1) is G-closed
also.

Since [0, 1) is a non-empty proper subset of R which is G-open and G-closed both, the topo-
logical space (R, G) is disconnected.

Now, (R,U) is connected. As connctedness is a topological property it must be possessed
by any topological space homeomorphic to (R,U). As (R,G) is not connected we conclude
that, (R,G) and (R,U) are not homeomorphic.

[ 16. Prove that a continuous image of connected space is connected ]

Proof:

Let (X,T) and (Y,4) be topological spaces and let f : X = Y be a T-continuous mapping
of X onto Y.

Let (X,T) be connected. If possible suppose (Y, %)) is disconnected.

Then there is some non-empty proper subset G of Y which is ¢-open as well 9-closed. As
fis X onto Y, we have f~1(G) also a non-empty subset of X.

Now, as f is Tp-continuous, f~'(G) is T-closed as well as T-open in X. This is not pos-
sible as X is connected.

There our supposition that (Y, ) is disconnected is wrong. Hence, (Y, ) is also connected.

[ 17. Relative topology and Subspace J

Relative topology and Subspace:




Let (X, T') be a topological space and Y be a non-empty subset of X. The T-relative topology
for Y denoted by Ty is the collection of subsets of ¥ given by

{GnY /| GeT}

The topological space (Y, Ty) is called a subspace of (X, T).

18. Open Set in a relative topology

Open Set in a relative topology:
Let (X, T) be a topological space and (Y, 7y} be its subspace. Then a subset S of Y is said to
be Ty-open if and only if there exists some T-open subset G of X such that

5= 13

19. Show that a relative topology satisfies all the conditions for becoming a
topological space

Proof:
Let (X, T) be a topological space and Y be a non-empty subset of X. The T-relative topology
for Y denoted by Ty is the collection of subsets of Y given by

Ty={GNnY /| GeT}
let us show that 75 satisfies all the properties of a toplogical space.

Wehave 3, X € T. AsdNY =0and XNY =Y.

Hence,
m,YGTy--- (1)

Next consider an arbitrary collection {S, / @ € A} of of members of Ty. Since each S, is Ty
open there corresponds some T-open set G, such that

Se =G NY

Now,
U Sa= ] (Gany)= (U Ga) ny
atch acA ach

Since, each G, is T-open, the union |J G, is T-open.
oA

Therefore, ( U Ga) NY is Ty open. Hence, |J S, is Ty open.

acA acA

Thus, arbitrary union of 7y open sets is 7y open - - - (2)



(iii) Finally, let {S; / i = 1,2,...,n} be a finite collection of members of Ty. Since each
S; is Ty open there corresponds some T-open set G; such that

Now,

Si=GiﬂY

Qs ﬂ(G ny) = (ﬂa) ny

Since, each G; is T-open, the finite intersection ﬂ G; is T-open.

i=1

Therefore, (ﬂ G’,;) NY is Ty open. Hence, [ S; is Ty open.
=1

i=1

Thus, finite intersection of Ty open sets is Ty open - - - (3)

From (1),(2) and (3) it follows that Ty possesses all the three properties of a toplological

space.
[ 20. The space (R,U) and ((0,1),U,1)) are homeomorphic. [Without proof] J

21. If I; and I; be any two open intervals then (I;,U,) and (I, U;,) are home-
omorphic. [Without proof]

22. If I is any open interval then space (R,U) and (I,U;) are homeomorphic.
[Without proof]

23. If I, and I, be any two closed intervals then (I;,U;) and (I, Ur,) are
homeomorphic. [Without proof]

24. Let (X,T) be a topological space and let ¥ be a subset of X. Prove
that a subset S of Y is Ty-closed iff there is a T-closed set F such that
S=Fry:

Proof:

Let S be a Ty-closed subset of Y. Therefore ¥ — S is a Ty-open subset of Y.

10



Therefore, there exists some T-open subset G of X such that
Y-S5=GnY
Here X — G is a T-closed subset of X. We shall show that S = (X — G)NY.

Now,

pES &< pgY¥Y -8
= pgGNY ( Y-8=GnY)
< p¢GandpeY
< pe(X—-G)andpeY
<= pe(X-GnNnY
. pES <= pe(X-G)NY
S S=X-G)nY

As X — (G is a T'-closed subset of X, taking F = X — G, we have
§=FRY
where F is a T-closed set.
Conversely, suppose for some T-closed set F' we have S = FNY.
To show that S is 7y closed we shall show that ¥ — 5 is Ty open.
Here, X — F is T-open as F is T-closed. We shall show that Y — S =(X — F)NY.

Now,

peEY -8 << pdSbutpeY
< pgFNYandpeY [ S=FnY)
< p¢FandpeY
< peX—-—FandpeY
. pEY-S &= peX-F)NnY
Y-S=(X—-F)nY

As X — Fis T-open Y — § is Ty-open. Hence S is Ty -closed.

25. Let (X,T) be a topological space and let Y be a subset of X. Prove that
if the subsapce (Y, Ty) is connected then so is the subspace (Y, Ty-).

Proof:
For (X,T)and Y C X, let (Y, Ty) be conncted.

If possible suppose (Y ~, Ty- ) is disconnected. Then there is some subset, say A, of Y~ which

11



is Ty--closed and Ty--open both. Therefore, there exist some T-open subset G and T-closed
subset F' of X such that
A=GNY" and A=FNY~

We note that GNY is Ty-open and F NY is Ty-closed. Now,
GNY =GN NY)=(GNY )NY=ANnY

and
FNY=FN{Y NY)=FNY)NY=A4NY

Therefore, we get,
GNY=FNY=ANnY

Let, B=GNY. Then B is a Ty-open and Ty-closed subset of Y.

As (Y,Ty) is connected B cannot be a non-empty proper subset of Y. Therefore we must
have B=@or B=Y.

CASE 1: B=4§
Since ANY = B, wehave ANY =@. As AC Y~ we have

YCcY -4

Now, A is Ty--open implies that Y~ — A is Ty--closed. As Y~ is T-closed, Y~ — A must be
T-closed.

As Y~ is the smallest T-closed set containing ¥, and Y C Y~ — A, we get
A=10
Which is a contradiction.

CASE 2: B=Y
Since ANY = B, we have ANY =Y. Therefore, Y C A.

As A is Ty—-closed and Y~ is T-closed, A is Ty-closed.

Also, Y~ is the smallest T-closed set containing ¥ and A is a T-closed subset containing
Y implies that, Y~ C A. Since, A C Y~ we have

A=Y"
Which is a contradiction.

Therefore, our supposition is wrong. Hence, (Y, Ty-) is connected.

[ 26. Covering and Subcovering J

Covering

12



A collection B = {S,/a € A} of subsets of a set X , where A is index set, is called a covering

for X if
USe=x
acA

Sub-covering
If B, and B; both are covering of a set X and B; C B; then B; is called a subcovering of B;.

[ 27. Open Covering ]

Open Covering:
Let (X, T) be a toplogical space. A collection B = {G,/a € A} of T-open subscts of a set X
where A is index set, is called a T-open covering for X if

| Jea=x

acA

[ 28. Compact Space ]

Compact Space:
A topological space (X, T) is said to be a Compact Space if every T-open covering of X has a
finite subcovering.

[ 29. Hausdorff Space J

Hausdorff Space

A topological space (X,T) is said called a Hausdorff space or T, space if for every pair of
distinct points p and ¢ in X there exist some T-nbhds N, and N, of p and g respectively such
that

NN N, =10

30. Prove that the space (R,U) is not compact and hence prove that no open
interval is compact in its relativized I{ topology.

Proof:
Let B = {(—n,n) / n € J*} be a collection of I{-open intervals, which are &-open subsets of R.

For any p € R there exists some positive integer N, such that [p| € N,. Therefore p €
(—Np, Np), hence

U(—n, n)=R

13



Therefore, B is a I{-open convering of R.

Now, consider any finite collection (—mnq,71}, (—n2,n2),...,(—ng, ng) of members of B. Let
N = maz{ny,ny,...,n}. Therefore n; < N. Hence,

(—ni,n,:) - (—N, N)
Therefore,
k
U(—n,:, n,-) C (—N, N)
i=1

Clearly N & (—N, N). This implies that

k

U(_niaﬂi) 7’5 R

i=1

Hence, the U-open covering B of R does not have a finite subcovering. Hence (R,U) cannot
be compact.

Finally let I be an open interval. Therefore (R,U) and (I,Uz) are homeomorphic to each
other. Since compactness is a topological property which is not possessed by {(R,U), the sub-
space (I,Ur) also cannot possess this property. Hence, (I,Uz) is not connected.

31. If (Y,7y) is a compact subspace of a Hausdorff space (X, 7T), then prove
that Y is 7 closed.

Proof:
(Y, 7y) is a compact subspace of a Hausdorff space (X, 7).

To prove that Y is T-closed, it is sufficient to prove that X — Y is T-open.
Let £ € X — Y. Therefore, z € Y. For any y € Y we have = # v.

Since, = # y and (X, T) is a Hausdorff space, there exist some T-open sets U, and V, such that
NV, =0
Corresponding to fixed z € X — Y, and any y € Y we have V, NY a Ty-open subset of ¥ and
y = Jwny)
yeY

Therefore, {V,NY / y € Y} is a Ty-open covering of Y. Since (Y, Ty ) is compact, the Ty-open
covering of Y has a finite subcovering, say {V,, NY /¢ =1,2,...,n} corresponding to some
points y; in Y.

Therefore, ¥ = 0 (Vi NY'). Hence,
i=1

YCOVi

=1

14



Corresponging to each y; there also corresponds a T-neighbourhood U,, such that U,,NV,, = 0.
Let .
c¢=J U,
i=1

Clearly G is a T-neighbourhood of z € X — Y as each U, is a T-neighbourhood of z.

Also as Uy, NV,, = B wehave GN YV, = 0. SinceY C |JV,, we have GNY = {.
i=1 i=1
Therefore, G C X — Y. Therefore X — Y is a T-neighbourhood of z.

As z is any point of X — Y, the set X — Y is a T-neighourhood of each of its points. Hence
X —Y is a T-open set. Therefore, Y is T-closed.

32. If (X,7) is compact and Y is a T-closed subset of X, then prove that
(Y, 7y} is also compact.

Proof:
Let {X,T) be a compact topological space and Y be a T-cloesed subset of X. Suppose S =
{8+ / @ € A} be a Ty-open covering of Y. Therefore,

v= U
acAS,

Also as each S, is Ty-open, there corrsponds some T-open subset G, of X such that S, =

GaNY. Therefore Y = |J . Therefore,
aEAGaNY)

Yc |G

acA

Since, Y is T-closed X — Y is T-open. Since, X = (X —Y)NY we have

XC(X—Y)U(UGQ)

acA

As the collection (X — Y)U {G,, / a € A} is a T-open covering of X.

Since, (X,T) is compact, the T-open covering of X has a finite subcovering. The subset
X —Y is convered by only one T-open subset which is X — Y itself. So the open subcovering
must include X — Y. Suppose the T-open subcovering of X is

{X_}/}G].JG25“'JG‘R}

Then, We must have,

Therefore,



For, S5; = G; NY we get,

Therefore, {S; /i =1,2,...,n} is a finite Ty-open subcovering for Y. Hence (Y, Ty) is com-
pact.
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