T.Y.B.Sc. : Semester - V (CBCS) # US05CMTH24 Metric Spaces and Topological Spaces [Syllabus effective from June, 2020] Study Material Prepared by: Mr. Rajesh P. Solanki Department of Mathematics and Statistics V.P. and R.P.T.P. Science College, Vallabh Vidyanagar # US05CMTH24- UNIT: IV ## 1. Connected and Disconnected Topological Spaces. ## Connected and Disconnected Topological Spaces A topological space (X, T) is said to be a disconnected if exist two non-empty subsets A and B of X with the following three properties - (1) $A \cup B = X$ - $(2) A^- \cap B = \emptyset$ - (3) $A \cap B^- = \emptyset$ If the space (X, T) is not disconnected then it is called Connected. ## NOTE: By the definition it follows that a topological space (X,T) is connected if it is IMPOSSIBLE to find non-empty subsets A and B which satisfy above three properties. 2. Prove that if a topological space (X,T) has a non-empty proper subset A that is both T-open and T-closed, then (X,T) is disconnected. ## **Proof:** Suppose, a topological space (X,T) has a non-empty proper subset A which is T-open and T-closed both. Define, B = X - A. Clearly B is also a non-empty proper subset of X such that, $$A\cap B=\emptyset ---(1)$$ and $$A \cup B = X - - - (2)$$ As A is a T-closed subset of X, we have $A^- = A$. Therefore from (1) we get, $$A^- \cap B = \emptyset - - - (3)$$ Also, A is T-open and B = X - A implies that B is T-closed. Hence $B^- = B$, Therefore from (1) we get, $$A \cap B^- = \emptyset - - - (4)$$ Thus we have two non-empty subsets of A and B of X with the properties at (2), (3) and (4). Hence, (X, T) is a disconnected space. 3. Prove that if (X,T) is disconnected then there is a nonempty proper subset of X that is both T-open and T-closed. ## **Proof:** Let (X,T) be a disconnected space. Therefore there exist two non-empty subsets A and B of X such that, $$A \cup B = X$$, $A^- \cap B = \emptyset$, $A \cap B^- = \emptyset$ Since, $A \subset A^-$ and $A^- \cap B = \emptyset$ it follows that $$A \cap B = \emptyset$$ Therefore, A is a proper subset of X as A and B are non-empty subsets of X and A = X - B. As $A \cap B^- = \emptyset$ and $A \cup B^- = X$, we have, $$A = X - B^-$$ Therefore, A is a T-open subset of X as B^- is a T-closed subset of X. Also, as $A^- \cap B = \emptyset$ and $A^- \cup B = X$ we have, $$B = X - A^-$$ Therefore, B is a T-open subset of X as A^- is a T-closed subset of X. Since A = X - B, it follows that A is T-closed also. Thus, A is a non-empty proper subset of X which is T-open and T-closed both. 4. Prove that a topological space (X, \mathcal{T}) is disconnected iff X has a non-empty proper subset that is both \mathcal{T} -open and \mathcal{T} -closed. Proof can be given by using the proofs of above two theorems. 5. Prove that every indiscrete space is connected. ### **Proof:** For any non-empty set X, the indiscrete topology is given by $I = \{\emptyset, X\}$ Therefore, there is no PROPER subset of X which is I-open as well as I-closed. Hence every indiscrete topology is connected. 6. Prove that discrete space that has more than one point is disconnected. ## **Proof:** A set with more than one elements always has at least one non-empty proper subset. Therefore, if a non-empty set X has more than one elements than its discrete topology \mathcal{D} , which is the family of all subsets of X, contains at least one proper subset of X. If A is a non-empty proper subset of X then A and its complement X-A both are \mathcal{D} open. Since, X - A is \mathcal{D} -open A is \mathcal{D} -closed also. Therefore X has a proper subset which is \mathcal{D} -open as well as \mathcal{D} -closed. Hence the discrete space is disconnected. 7. For $X = \{a, b, c\}$ consider the topology $T = \{X, \emptyset, \{a, b\}, \{c\}\}$. Is (X, T) connected? ## **Answer:** Here, $T = \{X, \emptyset, \{a, b\}, \{c\}\}$ is a topology for X The subsets $\{a, b\}$ of X is T-open. Also, $\{c\}$ is T-open and $\{a,b\} = X - \{c\}$. Therefore, $\{a,b\}$ is T-closed also. Thus, the proper subset $\{a, b\}$ of X is T-open as well as T-closed. Hence X is disconnected relative to T. ## 8. Bounded above subset of R ### Bounded above subset of R A subset A of R is said to be bounded above if there exists some fixed $K \in R$ such that $$x \leq K, \ \forall x \in A$$ ## 9. Bounded below subset of R ### Bounded below subset of R A subset A of R is said to be bounded below if there exists some fixed $K \in R$ such that $$K \leqslant x, \ \forall x \in A$$ ## 10. Bounded subset of R ## Bounded subset of R A suset A of R is said to be bounded if there exists some fixed $K_1, K_2 \in R$ such that $$K_1 \leqslant x \leqslant K_2, \ \forall \ x \in A$$ ## 11. Least Upper Bound ## Least Upper Bound Let A be a bounded subset of R. A real number u is said to be the least upper bound of A if - (1) $x \leq u, \ \forall x \in A \text{ and }$ - (2) if u' < u then there exists some $y \in A$ such that $u' < y \leqslant u$. The Least Upper Bound of a set is also known as the Supremum of A. ## NOTE: In other words we can say that the smallest member of the set of all the upper bounds of a bounded above subset A of R is called the Least Upper Bound of A. ## 12. Greatest Lower Bound ## **Greatest Lower Bound** Let A be a bounded subset of R. A real number l is said to be the greatest lower bound of A if - (1) $l \leqslant x$, $\forall x \in A$ and - (2) if l < l' then there exists some $y \in A$ such that $l \leq y < l'$. The Greatest Lower Bound of a set is also known as the Infimum of A. ### NOTE: In other words we can say that the greatest member of the set of all the lower bounds of a bounded below subset A of R is called the Greatest Lower Bound of A. # 13. State the Least Upper Bound property of R # Least Upper Bound property of R Every non-empty subset of R which is bounded above has the least upper bound in R. #### 14. Prove that the space (R, \mathcal{U}) is connected. ## **Proof:** Suppose that A is a non-empty proper subset of R which is \mathcal{U} -open and \mathcal{U} -closed both. Clearly the complement R-A also is non-empty. Take some $p_0 \in R - A$ and $q_0 \in A$. Clearly $p_0 \neq q_0$. By the law of Trichotomy we have either $p_0 < q_0$ or $p_0 > q_0$. $\frac{\text{CASE 1}: p_0 < q_0}{\text{Define,}}$ $$M = \{ q \in A \ / \ p_0 < q \}$$ As $p_0 < q_0$ and $q_0 \in A$ we have $q_0 \in M$. Also, p_0 is a lower bound of M. Thus, M is a non-empty subset of R which is bounded below. By the Order Completeness of R, M must have greatest lower bound in R. Let r_0 be the greatest lower bound of M. If N is a \mathcal{U} -neighbourhood of r_0 then there is some open interval (a,b) such that $$r_0 \in (a,b) \subset N$$ Since, $r_0 < b$ and r_0 is the greatest lower bound of M there exists some $q \in M$ such that $$r_0 \leqslant q < b$$ Therefore, $q \in N$. Thus every \mathcal{U} -neighbourhood of r_0 contains a point of M. Since $M \subset A$ it follows that every \mathcal{U} -neighbourhood of r_0 contains a point of A. Therefore, $r_0 \in A$ or r_0 is a cluster point of A, hence $r_0 \in A^-$. Since, A is \mathcal{U} -closed, we have $A^- = A$. Therefore, $$r_0 \in A$$ As A is \mathcal{U} -open also, r_0 is an interior point of A. Therefore there is some open interval (a_0, b_0) $r_0 \in (a_0,b_0) \subset A$ such that $$r_0\in(a_0,b_0)\subset A$$ Clearly $(a_0, r_0) \subset A$. As r_0 is the greatest lower bound of M the open interval (a_0, r_0) cannot contain any point of M. Therefore we cannot have $p_0 < r_0$ because in that case infinitely many members of (a_0, r_0) will be in M. Hence we have $$r_0 \leqslant p_0$$ Also p_0 is a lower bound of M and r_0 is the greatest lower bound of M. This implies that $$p_0 \leqslant r_0$$ Thus we must have $$p_0=r_0$$ This is a contradiction as $p_0 \in R - A$ and $q_0 \in A$. Therefore our supposition is wrong. Hence A = R or $A = \emptyset$. **CASE 2** : $q_0 < p_0$ Define, $$M = \{ q \in A \ / \ q < p_0 \}$$ As $q_0 < p_0$ and $q_0 \in A$ we have $q_0 \in M$. Also, p_0 is an upper bound of M. Thus, M is a non-empty subset of R which is bounded above. By the Order Completeness of R, M must have least upper bound in R. Let r_0 be the least upper bound of M. If N is a \mathcal{U} -neighbourhood of r_0 then there is some open interval (a,b) such that $$r_0 \in (a,b) \subset N$$ Since, $a < r_0$ and r_0 is the least upper bound of M there exists some $q \in M$ such that $$a < q \leqslant r_0$$ Therefore, $q \in N$. Thus every \mathcal{U} -neighbourhood of r_0 contains a point of M. Since $M \subset A$ it follows that every \mathcal{U} -neighbourhood of r_0 contains a point of A. Therefore, $r_0 \in A$ or r_0 is a cluster point of A, hence $r_0 \in A^-$. Since, A is \mathcal{U} -closed, we have $A^- = A$. Therefore, $$r_0 \in A$$ As A is \mathcal{U} -open also, r_0 is an interior point of A. Therefore there is some open interval (a_0, b_0) such that $$r_0 \in (a_0, b_0) \subset A$$ Clearly $(r_0, b_0) \subset A$. As r_0 is the least upper bound of M the open interval (r_0, b_0) cannot contain any point of M. Therefore we cannot have $r_0 < p_0$ because in that case infinitely many members of (r_0, b_0) will be in M. Hence we have $$p_0 \leqslant r_0$$ Also p_0 is an upper bound of M and r_0 is the least upper bound of M. This implies that $$r_0\leqslant p_0$$ Thus we must have $$p_0 = r_0$$ This is a contradiction as $p_0 \in R - A$ and $q_0 \in A$. Therefore our supposition is wrong. Hence A = R or $A = \emptyset$. Thus, it is impossible to find a non-empty proper subset of R which is \mathcal{U} -closed and \mathcal{U} -open both. Hence, (R, \mathcal{U}) is connected. 15. Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every $p \in G$ there is some $H = \{x \in R/a \leq x < b\}$ for a < b such that $p \in H \subset G$. ## **Proof:** We know that for a < b each half-closed half-open interval [a, b) is \mathcal{G} -open in R. Now, consider the \mathcal{G} -open subset [0,1) of R. We can express [0,1) as follows, $$R-[0,1)=\left(igcup_{i=1}^{\infty}\left[-i,0 ight) ight)igcup\left(igcup_{i=1}^{\infty}\left[1,i ight) ight)$$ Therefore, R - [0, 1) is a union of \mathcal{G} -open sets, hence it is \mathcal{G} -open. Therefore, [0, 1) is \mathcal{G} -closed also. Since [0,1) is a non-empty proper subset of R which is \mathcal{G} -open and \mathcal{G} -closed both, the topological space (R,\mathcal{G}) is disconnected. Now, (R, \mathcal{U}) is connected. As connectedness is a topological property it must be possessed by any topological space homeomorphic to (R, \mathcal{U}) . As (R, \mathcal{G}) is not connected we conclude that, (R, \mathcal{G}) and (R, \mathcal{U}) are not homeomorphic. 16. Prove that a continuous image of connected space is connected ### **Proof:** Let (X,T) and (Y,ψ) be topological spaces and let $f:X\to Y$ be a $T\psi$ -continuous mapping of X onto Y. Let (X,T) be connected. If possible suppose (Y,ψ) is disconnected. Then there is some non-empty proper subset G of Y which is ψ -open as well ψ -closed. As f is X onto Y, we have $f^{-1}(G)$ also a non-empty subset of X. Now, as f is $T\psi$ -continuous, $f^{-1}(G)$ is T-closed as well as T-open in X. This is not possible as X is connected. There our supposition that (Y, ψ) is disconnected is wrong. Hence, (Y, ψ) is also connected. ## 17. Relative topology and Subspace ## Relative topology and Subspace: Let (X, T) be a topological space and Y be a non-empty subset of X. The T-relative topology for Y denoted by T_Y is the collection of subsets of Y given by $$\{G \cap Y \mid G \in T\}$$ The topological space (Y, T_Y) is called a subspace of (X, T). ## 18. Open Set in a relative topology ## Open Set in a relative topology: Let (X,T) be a topological space and (Y,T_Y) be its subspace. Then a subset S of Y is said to be T_Y -open if and only if there exists some T-open subset G of X such that $$S = G \cap Y$$ 19. Show that a relative topology satisfies all the conditions for becoming a topological space ## **Proof:** Let (X,T) be a topological space and Y be a non-empty subset of X. The T-relative topology for Y denoted by T_Y is the collection of subsets of Y given by $$T_Y = \{G \cap Y \mid G \in T\}$$ let us show that T_Y satisfies all the properties of a toplogical space. We have $\emptyset, X \in T$. As $\emptyset \cap Y = \emptyset$ and $X \cap Y = Y$. Hence, $$\emptyset, Y \in T_Y - - - (1)$$ Next consider an arbitrary collection $\{S_{\alpha} \mid \alpha \in \Lambda\}$ of of members of T_Y . Since each S_{α} is T_Y open there corresponds some T-open set G_{α} such that $$S_{\alpha} = G_{\alpha} \cap Y$$ Now, $$\bigcup_{\alpha\in\Lambda}S_\alpha=\bigcup_{\alpha\in\Lambda}\left(G_\alpha\cap Y\right)=\left(\bigcup_{\alpha\in\Lambda}G_\alpha\right)\cap Y$$ Since, each G_{α} is T-open, the union $\bigcup_{\alpha \in \Lambda} G_{\alpha}$ is T-open. Therefore, $\left(\bigcup_{\alpha\in\Lambda}G_{\alpha}\right)\cap Y$ is T_{Y} open. Hence, $\bigcup_{\alpha\in\Lambda}S_{\alpha}$ is T_{Y} open. Thus, arbitrary union of T_Y open sets is T_Y open - - - (2) (iii) Finally, let $\{S_i \mid i=1,2,\ldots,n\}$ be a finite collection of members of T_Y . Since each S_i is T_Y open there corresponds some T-open set G_i such that $$S_i = G_i \cap Y$$ Now, $$\bigcap_{i=1}^n S_i = \bigcap_{i=1}^n (G_i \cap Y) = \left(\bigcap_{i=1}^n G_i\right) \cap Y$$ Since, each G_i is T-open, the finite intersection $\bigcap_{i=1}^n G_i$ is T-open. Therefore, $\left(\bigcap_{i=1}^n G_i\right) \cap Y$ is T_Y open. Hence, $\bigcap_{i=1}^n S_i$ is T_Y open. Thus, finite intersection of T_Y open sets is T_Y open - - - (3) From (1),(2) and (3) it follows that T_Y possesses all the three properties of a toplological space. - 20. The space (R, \mathcal{U}) and $((0,1), \mathcal{U}_{(0,1)})$ are homeomorphic. [Without proof] - 21. If I_1 and I_2 be any two open intervals then (I_1, \mathcal{U}_{I_1}) and (I_2, \mathcal{U}_{I_2}) are homeomorphic. [Without proof] - 22. If I is any open interval then space (R, \mathcal{U}) and (I, \mathcal{U}_I) are homeomorphic. [Without proof] - 23. If I_1 and I_2 be any two closed intervals then (I_1, \mathcal{U}_{I_1}) and (I_2, \mathcal{U}_{I_2}) are homeomorphic. [Without proof] - 24. Let (X,T) be a topological space and let Y be a subset of X. Prove that a subset S of Y is T_Y -closed iff there is a T-closed set F such that $S = F \cap Y$. ## **Proof:** Let S be a T_Y -closed subset of Y. Therefore Y - S is a T_Y -open subset of Y. Therefore, there exists some T-open subset G of X such that $$Y - S = G \cap Y$$ Here X - G is a T-closed subset of X. We shall show that $S = (X - G) \cap Y$. Now, $$p \in S \iff p \notin Y - S$$ $$\iff p \notin G \cap Y \qquad (\because Y - S = G \cap Y)$$ $$\iff p \notin G \text{ and } p \in Y$$ $$\iff p \in (X - G) \text{ and } p \in Y$$ $$\iff p \in (X - G \cap Y)$$ $$\therefore p \in S \iff p \in (X - G) \cap Y$$ $$\therefore S = (X - G) \cap Y$$ As X - G is a T-closed subset of X, taking F = X - G, we have $$S = F \cap Y$$ where F is a T-closed set. Conversely, suppose for some T-closed set F we have $S = F \cap Y$. To show that S is T_Y closed we shall show that Y - S is T_Y open. Here, X - F is T-open as F is T-closed. We shall show that $Y - S = (X - F) \cap Y$. Now, $$p \in Y - S \iff p \notin S \text{ but } p \in Y$$ $$\iff p \notin F \cap Y \text{ and } p \in Y \qquad (\because S = F \cap Y)$$ $$\iff p \notin F \text{ and } p \in Y$$ $$\iff p \in X - F \text{ and } p \in Y$$ $$\therefore p \in Y - S \iff p \in (X - F) \cap Y$$ $$\therefore Y - S = (X - F) \cap Y$$ As X - F is T-open Y - S is T_Y -open. Hence S is T_Y -closed. 25. Let (X,T) be a topological space and let Y be a subset of X. Prove that if the subspace (Y,T_Y) is connected then so is the subspace (Y^-,T_{Y^-}) . ### **Proof:** For (X,T) and $Y \subset X$, let (Y,T_Y) be connected. If possible suppose (Y^-, T_{Y^-}) is disconnected. Then there is some subset, say A, of Y^- which is T_{Y^-} -closed and T_{Y^-} -open both. Therefore, there exist some T-open subset G and T-closed subset F of X such that $$A = G \cap Y^-$$ and $A = F \cap Y^-$ We note that $G \cap Y$ is T_Y -open and $F \cap Y$ is T_Y -closed. Now, $$G \cap Y = G \cap (Y^- \cap Y) = (G \cap Y^-) \cap Y = A \cap Y$$ and $$F \cap Y = F \cap (Y^- \cap Y) = (F \cap Y^-) \cap Y = A \cap Y$$ Therefore, we get, $$G \cap Y = F \cap Y = A \cap Y$$ Let, $B = G \cap Y$. Then B is a T_Y -open and T_Y -closed subset of Y. As (Y, T_Y) is connected B cannot be a non-empty proper subset of Y. Therefore we must have $B = \emptyset$ or B = Y. ## CASE 1: $B = \emptyset$ Since $A \cap Y = B$, we have $A \cap Y = \emptyset$. As $A \subset Y^-$ we have $$Y \subset Y^- - A$$ Now, A is T_{Y^-} -open implies that $Y^- - A$ is T_{Y^-} -closed. As Y^- is T-closed, $Y^- - A$ must be T-closed. As Y^- is the smallest T-closed set containing Y, and $Y \subset Y^- - A$, we get $$A = \emptyset$$ Which is a contradiction. ## CASE 2: B = Y Since $A \cap Y = B$, we have $A \cap Y = Y$. Therefore, $Y \subset A$. As A is T_{Y^-} -closed and Y^- is T-closed, A is T_{Y^-} -closed. Also, Y^- is the smallest T-closed set containing Y and A is a T-closed subset containing Y implies that, $Y^- \subset A$. Since, $A \subset Y^-$ we have $$A = Y^-$$ Which is a contradiction. Therefore, our supposition is wrong. Hence, (Y^-, T_{Y^-}) is connected. ## 26. Covering and Subcovering ## Covering A collection $\mathcal{B} = \{S_{\alpha}/\alpha \in \Lambda\}$ of subsets of a set X , where Λ is index set, is called a covering for X if $$\bigcup_{\alpha \in \Lambda} S_{\alpha} = X$$ Sub-covering If \mathcal{B}_1 and \mathcal{B}_2 both are covering of a set X and $\mathcal{B}_2 \subset \mathcal{B}_1$ then \mathcal{B}_2 is called a subcovering of \mathcal{B}_1 . ## 27. Open Covering **Open Covering:** Let (X,T) be a toplogical space. A collection $\mathcal{B} = \{G_{\alpha}/\alpha \in \Lambda\}$ of T-open subsets of a set X, where Λ is index set, is called a T-open covering for X if $$\bigcup_{\alpha\in\Lambda}G_\alpha=X$$ ## 28. Compact Space Compact Space: A topological space (X,T) is said to be a Compact Space if every T-open covering of X has a finite subcovering. # 29. Hausdorff Space **Hausdorff Space** A topological space (X,T) is said called a Hausdorff space or T_2 space if for every pair of distinct points p and q in X there exist some T-nbhds N_p and N_q of p and q respectively such that $$N_p \cap N_q = \emptyset$$ 30. Prove that the space (R, \mathcal{U}) is not compact and hence prove that no open interval is compact in its relativized \mathcal{U} topology. **Proof:** Let $\mathcal{B} = \{(-n, n) / n \in J^+\}$ be a collection of \mathcal{U} -open intervals, which are \mathcal{U} -open subsets of R. For any $p \in R$ there exists some positive integer N_p such that $|p| \leq N_p$. Therefore $p \in (-N_p, N_p)$, hence $$\bigcup_{n=1}^{\infty} (-n,n) = R$$ Therefore, \mathcal{B} is a \mathcal{U} -open convering of R. Now, consider any finite collection $(-n_1, n_1), (-n_2, n_2), \ldots, (-n_k, n_k)$ of members of \mathcal{B} . Let $N = \max\{n_1, n_2, \ldots, n_k\}$. Therefore $n_i \leq N$. Hence, $$(-n_i, n_i) \subset (-N, N)$$ Therefore, $$\bigcup_{i=1}^k (-n_i, n_i) \subset (-N, N)$$ Clearly $N \notin (-N, N)$. This implies that $$\bigcup_{i=1}^{k} (-n_i, n_i) \neq R$$ Hence, the \mathcal{U} -open covering \mathcal{B} of R does not have a finite subcovering. Hence (R,\mathcal{U}) cannot be compact. Finally let I be an open interval. Therefore (R, \mathcal{U}) and $(I, \mathcal{U}_{\mathcal{I}})$ are homeomorphic to each other. Since compactness is a topological property which is not possessed by (R, \mathcal{U}) , the subspace $(I, \mathcal{U}_{\mathcal{I}})$ also cannot possess this property. Hence, $(I, \mathcal{U}_{\mathcal{I}})$ is not connected. 31. If (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) , then prove that Y is \mathcal{T} closed. ### **Proof:** (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) . To prove that Y is T-closed, it is sufficient to prove that X - Y is T-open. Let $x \in X - Y$. Therefore, $x \notin Y$. For any $y \in Y$ we have $x \neq y$. Since, $x \neq y$ and (X, T) is a Hausdorff space, there exist some T-open sets U_y and V_y such that $$U_y\cap V_y=\emptyset$$ Corresponding to fixed $x \in X - Y$, and any $y \in Y$ we have $V_y \cap Y$ a T_Y -open subset of Y and $$Y = \bigcup_{y \in Y} (V_y \cap Y)$$ Therefore, $\{V_y \cap Y \mid y \in Y\}$ is a T_Y -open covering of Y. Since (Y, T_Y) is compact, the T_Y -open covering of Y has a finite subcovering, say $\{V_{y_i} \cap Y \mid i = 1, 2, ..., n\}$ corresponding to some points y_i in Y. Therefore, $Y = \bigcup_{i=1}^{n} (V_{y_i} \cap Y)$. Hence, $$Y \subset \bigcup_{i=1}^n V_{y_i}$$ Corresponding to each y_i there also corresponds a T-neighbourhood U_{y_i} such that $U_{y_i} \cap V_{y_i} = \emptyset$. Let $$G = \bigcup_{i=1}^n \ U_{y_i}$$ Clearly G is a T-neighbourhood of $x \in X - Y$ as each U_{y_i} is a T-neighbourhood of x. Also as $U_{y_i} \cap V_{y_i} = \emptyset$ we have $G \cap \bigcup_{i=1}^n V_{y_i} = \emptyset$. Since $Y \subset \bigcup_{i=1}^n V_{y_i}$ we have $G \cap Y = \emptyset$. Therefore, $G \subset X - Y$. Therefore X - Y is a T-neighbourhood of x. As x is any point of X - Y, the set X - Y is a T-neighbourhood of each of its points. Hence X - Y is a T-open set. Therefore, Y is T-closed. 32. If (X, \mathcal{T}) is compact and Y is a \mathcal{T} -closed subset of X, then prove that (Y, \mathcal{T}_Y) is also compact. ### **Proof:** Let (X, \mathcal{T}) be a compact topological space and Y be a T-closed subset of X. Suppose $\mathcal{S} = \{S_{\alpha} \mid \alpha \in \lambda\}$ be a T_Y -open covering of Y. Therefore, $$Y = \bigcup_{\alpha \in \Lambda S_{\alpha}}$$ Also as each S_{α} is T_Y -open, there corrsponds some T-open subset G_{α} of X such that $S_{\alpha} = G_{\alpha} \cap Y$. Therefore $Y = \bigcup_{\alpha \in \Lambda(G_{\alpha} \cap Y)}$. Therefore, $$Y \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}$$ Since, Y is T-closed X - Y is T-open. Since, $X = (X - Y) \cap Y$ we have $$X \subset (X - Y) \cup \left(\bigcup_{\alpha \in \Lambda} G_{\alpha}\right)$$ As the collection $(X - Y) \cup \{G_{\alpha} / \alpha \in \lambda\}$ is a T-open covering of X. Since, (X,T) is compact, the T-open covering of X has a finite subcovering. The subset X-Y is convered by only one T-open subset which is X-Y itself. So the open subcovering must include X-Y. Suppose the T-open subcovering of X is $$\{X-Y,G_1,G_2,\ldots,G_n\}$$ Then, We must have, $$Y \subset \bigcup_{i=1}^n G_i$$ Therefore, $$Y=\bigcup_{i=1}^n (G_i\cap Y)$$ For, $S_i = G_i \cap Y$ we get, $$Y = \bigcup_{i=1}^{n} S_i$$ Therefore, $\{S_i \mid i=1,2,\ldots,n\}$ is a finite T_Y -open subcovering for Y. Hence (Y,T_Y) is compact. Rajesh P. Solanki