T.Y.B.Sc. : Semester - V (CBCS)

US05CMTH24

Metric Spaces and Topological Spaces

[Syllabus effective from June, 2020]

Study Material Prepared by:
Mr. Rajesh P. Solanki
Department of Mathematics and Statistics
V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

US05CMTH24- UNIT: IV

1. Connected and Disconnected Topological Spaces.

Connected and Disconnected Topological Spaces

A topological space (X, T) is said to be a disconnected if exist two non-empty subsets A and B of X with the following three properties

- (1) $A \cup B = X$
- $(2) A^- \cap B = \emptyset$
- (3) $A \cap B^- = \emptyset$

If the space (X, T) is not disconnected then it is called Connected.

NOTE:

By the definition it follows that a topological space (X,T) is connected if it is IMPOSSIBLE to find non-empty subsets A and B which satisfy above three properties.

2. Prove that if a topological space (X,T) has a non-empty proper subset A that is both T-open and T-closed, then (X,T) is disconnected.

Proof:

Suppose, a topological space (X,T) has a non-empty proper subset A which is T-open and T-closed both.

Define, B = X - A. Clearly B is also a non-empty proper subset of X such that,

$$A\cap B=\emptyset ---(1)$$

and

$$A \cup B = X - - - (2)$$

As A is a T-closed subset of X, we have $A^- = A$. Therefore from (1) we get,

$$A^- \cap B = \emptyset - - - (3)$$

Also, A is T-open and B = X - A implies that B is T-closed. Hence $B^- = B$, Therefore from (1) we get,

$$A \cap B^- = \emptyset - - - (4)$$

Thus we have two non-empty subsets of A and B of X with the properties at (2), (3) and (4).

Hence, (X, T) is a disconnected space.

3. Prove that if (X,T) is disconnected then there is a nonempty proper subset of X that is both T-open and T-closed.

Proof:

Let (X,T) be a disconnected space. Therefore there exist two non-empty subsets A and B of X such that,

$$A \cup B = X$$
, $A^- \cap B = \emptyset$, $A \cap B^- = \emptyset$

Since, $A \subset A^-$ and $A^- \cap B = \emptyset$ it follows that

$$A \cap B = \emptyset$$

Therefore, A is a proper subset of X as A and B are non-empty subsets of X and A = X - B.

As $A \cap B^- = \emptyset$ and $A \cup B^- = X$, we have,

$$A = X - B^-$$

Therefore, A is a T-open subset of X as B^- is a T-closed subset of X.

Also, as $A^- \cap B = \emptyset$ and $A^- \cup B = X$ we have,

$$B = X - A^-$$

Therefore, B is a T-open subset of X as A^- is a T-closed subset of X.

Since A = X - B, it follows that A is T-closed also.

Thus, A is a non-empty proper subset of X which is T-open and T-closed both.

4. Prove that a topological space (X, \mathcal{T}) is disconnected iff X has a non-empty proper subset that is both \mathcal{T} -open and \mathcal{T} -closed.

Proof can be given by using the proofs of above two theorems.

5. Prove that every indiscrete space is connected.

Proof:

For any non-empty set X, the indiscrete topology is given by $I = \{\emptyset, X\}$

Therefore, there is no PROPER subset of X which is I-open as well as I-closed.

Hence every indiscrete topology is connected.

6. Prove that discrete space that has more than one point is disconnected.

Proof:

A set with more than one elements always has at least one non-empty proper subset.

Therefore, if a non-empty set X has more than one elements than its discrete topology \mathcal{D} , which is the family of all subsets of X, contains at least one proper subset of X.

If A is a non-empty proper subset of X then A and its complement X-A both are \mathcal{D} open.

Since, X - A is \mathcal{D} -open A is \mathcal{D} -closed also.

Therefore X has a proper subset which is \mathcal{D} -open as well as \mathcal{D} -closed.

Hence the discrete space is disconnected.

7. For $X = \{a, b, c\}$ consider the topology $T = \{X, \emptyset, \{a, b\}, \{c\}\}$. Is (X, T) connected?

Answer:

Here, $T = \{X, \emptyset, \{a, b\}, \{c\}\}$ is a topology for X

The subsets $\{a, b\}$ of X is T-open.

Also, $\{c\}$ is T-open and $\{a,b\} = X - \{c\}$. Therefore, $\{a,b\}$ is T-closed also.

Thus, the proper subset $\{a, b\}$ of X is T-open as well as T-closed.

Hence X is disconnected relative to T.

8. Bounded above subset of R

Bounded above subset of R

A subset A of R is said to be bounded above if there exists some fixed $K \in R$ such that

$$x \leq K, \ \forall x \in A$$

9. Bounded below subset of R

Bounded below subset of R

A subset A of R is said to be bounded below if there exists some fixed $K \in R$ such that

$$K \leqslant x, \ \forall x \in A$$

10. Bounded subset of R

Bounded subset of R

A suset A of R is said to be bounded if there exists some fixed $K_1, K_2 \in R$ such that

$$K_1 \leqslant x \leqslant K_2, \ \forall \ x \in A$$

11. Least Upper Bound

Least Upper Bound

Let A be a bounded subset of R. A real number u is said to be the least upper bound of A if

- (1) $x \leq u, \ \forall x \in A \text{ and }$
- (2) if u' < u then there exists some $y \in A$ such that $u' < y \leqslant u$.

The Least Upper Bound of a set is also known as the Supremum of A.

NOTE:

In other words we can say that the smallest member of the set of all the upper bounds of a bounded above subset A of R is called the Least Upper Bound of A.

12. Greatest Lower Bound

Greatest Lower Bound

Let A be a bounded subset of R. A real number l is said to be the greatest lower bound of A if

- (1) $l \leqslant x$, $\forall x \in A$ and
- (2) if l < l' then there exists some $y \in A$ such that $l \leq y < l'$.

The Greatest Lower Bound of a set is also known as the Infimum of A.

NOTE:

In other words we can say that the greatest member of the set of all the lower bounds of a bounded below subset A of R is called the Greatest Lower Bound of A.

13. State the Least Upper Bound property of R

Least Upper Bound property of R

Every non-empty subset of R which is bounded above has the least upper bound in R.

14. Prove that the space (R, \mathcal{U}) is connected.

Proof:

Suppose that A is a non-empty proper subset of R which is \mathcal{U} -open and \mathcal{U} -closed both. Clearly the complement R-A also is non-empty.

Take some $p_0 \in R - A$ and $q_0 \in A$. Clearly $p_0 \neq q_0$.

By the law of Trichotomy we have either $p_0 < q_0$ or $p_0 > q_0$.

 $\frac{\text{CASE 1}: p_0 < q_0}{\text{Define,}}$

$$M = \{ q \in A \ / \ p_0 < q \}$$

As $p_0 < q_0$ and $q_0 \in A$ we have $q_0 \in M$. Also, p_0 is a lower bound of M.

Thus, M is a non-empty subset of R which is bounded below. By the Order Completeness of R, M must have greatest lower bound in R. Let r_0 be the greatest lower bound of M.

If N is a \mathcal{U} -neighbourhood of r_0 then there is some open interval (a,b) such that

$$r_0 \in (a,b) \subset N$$

Since, $r_0 < b$ and r_0 is the greatest lower bound of M there exists some $q \in M$ such that

$$r_0 \leqslant q < b$$

Therefore, $q \in N$. Thus every \mathcal{U} -neighbourhood of r_0 contains a point of M. Since $M \subset A$ it follows that every \mathcal{U} -neighbourhood of r_0 contains a point of A. Therefore, $r_0 \in A$ or r_0 is a cluster point of A, hence $r_0 \in A^-$. Since, A is \mathcal{U} -closed, we have $A^- = A$. Therefore,

$$r_0 \in A$$

As A is \mathcal{U} -open also, r_0 is an interior point of A. Therefore there is some open interval (a_0, b_0) $r_0 \in (a_0,b_0) \subset A$ such that

$$r_0\in(a_0,b_0)\subset A$$

Clearly $(a_0, r_0) \subset A$. As r_0 is the greatest lower bound of M the open interval (a_0, r_0) cannot contain any point of M. Therefore we cannot have $p_0 < r_0$ because in that case infinitely many members of (a_0, r_0) will be in M. Hence we have

$$r_0 \leqslant p_0$$

Also p_0 is a lower bound of M and r_0 is the greatest lower bound of M. This implies that

$$p_0 \leqslant r_0$$

Thus we must have

$$p_0=r_0$$

This is a contradiction as $p_0 \in R - A$ and $q_0 \in A$.

Therefore our supposition is wrong. Hence A = R or $A = \emptyset$.

CASE 2 : $q_0 < p_0$

Define,

$$M = \{ q \in A \ / \ q < p_0 \}$$

As $q_0 < p_0$ and $q_0 \in A$ we have $q_0 \in M$. Also, p_0 is an upper bound of M.

Thus, M is a non-empty subset of R which is bounded above. By the Order Completeness of R, M must have least upper bound in R. Let r_0 be the least upper bound of M.

If N is a \mathcal{U} -neighbourhood of r_0 then there is some open interval (a,b) such that

$$r_0 \in (a,b) \subset N$$

Since, $a < r_0$ and r_0 is the least upper bound of M there exists some $q \in M$ such that

$$a < q \leqslant r_0$$

Therefore, $q \in N$. Thus every \mathcal{U} -neighbourhood of r_0 contains a point of M. Since $M \subset A$ it follows that every \mathcal{U} -neighbourhood of r_0 contains a point of A. Therefore, $r_0 \in A$ or r_0 is a cluster point of A, hence $r_0 \in A^-$. Since, A is \mathcal{U} -closed, we have $A^- = A$. Therefore,

$$r_0 \in A$$

As A is \mathcal{U} -open also, r_0 is an interior point of A. Therefore there is some open interval (a_0, b_0) such that

$$r_0 \in (a_0, b_0) \subset A$$

Clearly $(r_0, b_0) \subset A$. As r_0 is the least upper bound of M the open interval (r_0, b_0) cannot contain any point of M. Therefore we cannot have $r_0 < p_0$ because in that case infinitely many members of (r_0, b_0) will be in M. Hence we have

$$p_0 \leqslant r_0$$

Also p_0 is an upper bound of M and r_0 is the least upper bound of M. This implies that

$$r_0\leqslant p_0$$

Thus we must have

$$p_0 = r_0$$

This is a contradiction as $p_0 \in R - A$ and $q_0 \in A$.

Therefore our supposition is wrong. Hence A = R or $A = \emptyset$.

Thus, it is impossible to find a non-empty proper subset of R which is \mathcal{U} -closed and \mathcal{U} -open both.

Hence, (R, \mathcal{U}) is connected.

15. Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every $p \in G$ there is some $H = \{x \in R/a \leq x < b\}$ for a < b such that $p \in H \subset G$.

Proof:

We know that for a < b each half-closed half-open interval [a, b) is \mathcal{G} -open in R.

Now, consider the \mathcal{G} -open subset [0,1) of R. We can express [0,1) as follows,

$$R-[0,1)=\left(igcup_{i=1}^{\infty}\left[-i,0
ight)
ight)igcup\left(igcup_{i=1}^{\infty}\left[1,i
ight)
ight)$$

Therefore, R - [0, 1) is a union of \mathcal{G} -open sets, hence it is \mathcal{G} -open. Therefore, [0, 1) is \mathcal{G} -closed also.

Since [0,1) is a non-empty proper subset of R which is \mathcal{G} -open and \mathcal{G} -closed both, the topological space (R,\mathcal{G}) is disconnected.

Now, (R, \mathcal{U}) is connected. As connectedness is a topological property it must be possessed by any topological space homeomorphic to (R, \mathcal{U}) . As (R, \mathcal{G}) is not connected we conclude that, (R, \mathcal{G}) and (R, \mathcal{U}) are not homeomorphic.

16. Prove that a continuous image of connected space is connected

Proof:

Let (X,T) and (Y,ψ) be topological spaces and let $f:X\to Y$ be a $T\psi$ -continuous mapping of X onto Y.

Let (X,T) be connected. If possible suppose (Y,ψ) is disconnected.

Then there is some non-empty proper subset G of Y which is ψ -open as well ψ -closed. As f is X onto Y, we have $f^{-1}(G)$ also a non-empty subset of X.

Now, as f is $T\psi$ -continuous, $f^{-1}(G)$ is T-closed as well as T-open in X. This is not possible as X is connected.

There our supposition that (Y, ψ) is disconnected is wrong. Hence, (Y, ψ) is also connected.

17. Relative topology and Subspace

Relative topology and Subspace:

Let (X, T) be a topological space and Y be a non-empty subset of X. The T-relative topology for Y denoted by T_Y is the collection of subsets of Y given by

$$\{G \cap Y \mid G \in T\}$$

The topological space (Y, T_Y) is called a subspace of (X, T).

18. Open Set in a relative topology

Open Set in a relative topology:

Let (X,T) be a topological space and (Y,T_Y) be its subspace. Then a subset S of Y is said to be T_Y -open if and only if there exists some T-open subset G of X such that

$$S = G \cap Y$$

19. Show that a relative topology satisfies all the conditions for becoming a topological space

Proof:

Let (X,T) be a topological space and Y be a non-empty subset of X. The T-relative topology for Y denoted by T_Y is the collection of subsets of Y given by

$$T_Y = \{G \cap Y \mid G \in T\}$$

let us show that T_Y satisfies all the properties of a toplogical space.

We have $\emptyset, X \in T$. As $\emptyset \cap Y = \emptyset$ and $X \cap Y = Y$.

Hence,

$$\emptyset, Y \in T_Y - - - (1)$$

Next consider an arbitrary collection $\{S_{\alpha} \mid \alpha \in \Lambda\}$ of of members of T_Y . Since each S_{α} is T_Y open there corresponds some T-open set G_{α} such that

$$S_{\alpha} = G_{\alpha} \cap Y$$

Now,

$$\bigcup_{\alpha\in\Lambda}S_\alpha=\bigcup_{\alpha\in\Lambda}\left(G_\alpha\cap Y\right)=\left(\bigcup_{\alpha\in\Lambda}G_\alpha\right)\cap Y$$

Since, each G_{α} is T-open, the union $\bigcup_{\alpha \in \Lambda} G_{\alpha}$ is T-open.

Therefore, $\left(\bigcup_{\alpha\in\Lambda}G_{\alpha}\right)\cap Y$ is T_{Y} open. Hence, $\bigcup_{\alpha\in\Lambda}S_{\alpha}$ is T_{Y} open.

Thus, arbitrary union of T_Y open sets is T_Y open - - - (2)

(iii) Finally, let $\{S_i \mid i=1,2,\ldots,n\}$ be a finite collection of members of T_Y . Since each S_i is T_Y open there corresponds some T-open set G_i such that

$$S_i = G_i \cap Y$$

Now,

$$\bigcap_{i=1}^n S_i = \bigcap_{i=1}^n (G_i \cap Y) = \left(\bigcap_{i=1}^n G_i\right) \cap Y$$

Since, each G_i is T-open, the finite intersection $\bigcap_{i=1}^n G_i$ is T-open.

Therefore, $\left(\bigcap_{i=1}^n G_i\right) \cap Y$ is T_Y open. Hence, $\bigcap_{i=1}^n S_i$ is T_Y open.

Thus, finite intersection of T_Y open sets is T_Y open - - - (3)

From (1),(2) and (3) it follows that T_Y possesses all the three properties of a toplological space.

- 20. The space (R, \mathcal{U}) and $((0,1), \mathcal{U}_{(0,1)})$ are homeomorphic. [Without proof]
- 21. If I_1 and I_2 be any two open intervals then (I_1, \mathcal{U}_{I_1}) and (I_2, \mathcal{U}_{I_2}) are homeomorphic. [Without proof]
- 22. If I is any open interval then space (R, \mathcal{U}) and (I, \mathcal{U}_I) are homeomorphic. [Without proof]
- 23. If I_1 and I_2 be any two closed intervals then (I_1, \mathcal{U}_{I_1}) and (I_2, \mathcal{U}_{I_2}) are homeomorphic. [Without proof]
- 24. Let (X,T) be a topological space and let Y be a subset of X. Prove that a subset S of Y is T_Y -closed iff there is a T-closed set F such that $S = F \cap Y$.

Proof:

Let S be a T_Y -closed subset of Y. Therefore Y - S is a T_Y -open subset of Y.

Therefore, there exists some T-open subset G of X such that

$$Y - S = G \cap Y$$

Here X - G is a T-closed subset of X. We shall show that $S = (X - G) \cap Y$.

Now,

$$p \in S \iff p \notin Y - S$$

$$\iff p \notin G \cap Y \qquad (\because Y - S = G \cap Y)$$

$$\iff p \notin G \text{ and } p \in Y$$

$$\iff p \in (X - G) \text{ and } p \in Y$$

$$\iff p \in (X - G \cap Y)$$

$$\therefore p \in S \iff p \in (X - G) \cap Y$$

$$\therefore S = (X - G) \cap Y$$

As X - G is a T-closed subset of X, taking F = X - G, we have

$$S = F \cap Y$$

where F is a T-closed set.

Conversely, suppose for some T-closed set F we have $S = F \cap Y$.

To show that S is T_Y closed we shall show that Y - S is T_Y open.

Here, X - F is T-open as F is T-closed. We shall show that $Y - S = (X - F) \cap Y$.

Now,

$$p \in Y - S \iff p \notin S \text{ but } p \in Y$$

$$\iff p \notin F \cap Y \text{ and } p \in Y \qquad (\because S = F \cap Y)$$

$$\iff p \notin F \text{ and } p \in Y$$

$$\iff p \in X - F \text{ and } p \in Y$$

$$\therefore p \in Y - S \iff p \in (X - F) \cap Y$$

$$\therefore Y - S = (X - F) \cap Y$$

As X - F is T-open Y - S is T_Y -open. Hence S is T_Y -closed.

25. Let (X,T) be a topological space and let Y be a subset of X. Prove that if the subspace (Y,T_Y) is connected then so is the subspace (Y^-,T_{Y^-}) .

Proof:

For (X,T) and $Y \subset X$, let (Y,T_Y) be connected.

If possible suppose (Y^-, T_{Y^-}) is disconnected. Then there is some subset, say A, of Y^- which

is T_{Y^-} -closed and T_{Y^-} -open both. Therefore, there exist some T-open subset G and T-closed subset F of X such that

$$A = G \cap Y^-$$
 and $A = F \cap Y^-$

We note that $G \cap Y$ is T_Y -open and $F \cap Y$ is T_Y -closed. Now,

$$G \cap Y = G \cap (Y^- \cap Y) = (G \cap Y^-) \cap Y = A \cap Y$$

and

$$F \cap Y = F \cap (Y^- \cap Y) = (F \cap Y^-) \cap Y = A \cap Y$$

Therefore, we get,

$$G \cap Y = F \cap Y = A \cap Y$$

Let, $B = G \cap Y$. Then B is a T_Y -open and T_Y -closed subset of Y.

As (Y, T_Y) is connected B cannot be a non-empty proper subset of Y. Therefore we must have $B = \emptyset$ or B = Y.

CASE 1: $B = \emptyset$

Since $A \cap Y = B$, we have $A \cap Y = \emptyset$. As $A \subset Y^-$ we have

$$Y \subset Y^- - A$$

Now, A is T_{Y^-} -open implies that $Y^- - A$ is T_{Y^-} -closed. As Y^- is T-closed, $Y^- - A$ must be T-closed.

As Y^- is the smallest T-closed set containing Y, and $Y \subset Y^- - A$, we get

$$A = \emptyset$$

Which is a contradiction.

CASE 2: B = Y

Since $A \cap Y = B$, we have $A \cap Y = Y$. Therefore, $Y \subset A$.

As A is T_{Y^-} -closed and Y^- is T-closed, A is T_{Y^-} -closed.

Also, Y^- is the smallest T-closed set containing Y and A is a T-closed subset containing Y implies that, $Y^- \subset A$. Since, $A \subset Y^-$ we have

$$A = Y^-$$

Which is a contradiction.

Therefore, our supposition is wrong. Hence, (Y^-, T_{Y^-}) is connected.

26. Covering and Subcovering

Covering

A collection $\mathcal{B} = \{S_{\alpha}/\alpha \in \Lambda\}$ of subsets of a set X , where Λ is index set, is called a covering for X if

$$\bigcup_{\alpha \in \Lambda} S_{\alpha} = X$$

Sub-covering

If \mathcal{B}_1 and \mathcal{B}_2 both are covering of a set X and $\mathcal{B}_2 \subset \mathcal{B}_1$ then \mathcal{B}_2 is called a subcovering of \mathcal{B}_1 .

27. Open Covering

Open Covering:

Let (X,T) be a toplogical space. A collection $\mathcal{B} = \{G_{\alpha}/\alpha \in \Lambda\}$ of T-open subsets of a set X, where Λ is index set, is called a T-open covering for X if

$$\bigcup_{\alpha\in\Lambda}G_\alpha=X$$

28. Compact Space

Compact Space:

A topological space (X,T) is said to be a Compact Space if every T-open covering of X has a finite subcovering.

29. Hausdorff Space

Hausdorff Space

A topological space (X,T) is said called a Hausdorff space or T_2 space if for every pair of distinct points p and q in X there exist some T-nbhds N_p and N_q of p and q respectively such that

$$N_p \cap N_q = \emptyset$$

30. Prove that the space (R, \mathcal{U}) is not compact and hence prove that no open interval is compact in its relativized \mathcal{U} topology.

Proof:

Let $\mathcal{B} = \{(-n, n) / n \in J^+\}$ be a collection of \mathcal{U} -open intervals, which are \mathcal{U} -open subsets of R.

For any $p \in R$ there exists some positive integer N_p such that $|p| \leq N_p$. Therefore $p \in (-N_p, N_p)$, hence

$$\bigcup_{n=1}^{\infty} (-n,n) = R$$

Therefore, \mathcal{B} is a \mathcal{U} -open convering of R.

Now, consider any finite collection $(-n_1, n_1), (-n_2, n_2), \ldots, (-n_k, n_k)$ of members of \mathcal{B} . Let $N = \max\{n_1, n_2, \ldots, n_k\}$. Therefore $n_i \leq N$. Hence,

$$(-n_i, n_i) \subset (-N, N)$$

Therefore,

$$\bigcup_{i=1}^k (-n_i, n_i) \subset (-N, N)$$

Clearly $N \notin (-N, N)$. This implies that

$$\bigcup_{i=1}^{k} (-n_i, n_i) \neq R$$

Hence, the \mathcal{U} -open covering \mathcal{B} of R does not have a finite subcovering. Hence (R,\mathcal{U}) cannot be compact.

Finally let I be an open interval. Therefore (R, \mathcal{U}) and $(I, \mathcal{U}_{\mathcal{I}})$ are homeomorphic to each other. Since compactness is a topological property which is not possessed by (R, \mathcal{U}) , the subspace $(I, \mathcal{U}_{\mathcal{I}})$ also cannot possess this property. Hence, $(I, \mathcal{U}_{\mathcal{I}})$ is not connected.

31. If (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) , then prove that Y is \mathcal{T} closed.

Proof:

 (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) .

To prove that Y is T-closed, it is sufficient to prove that X - Y is T-open.

Let $x \in X - Y$. Therefore, $x \notin Y$. For any $y \in Y$ we have $x \neq y$.

Since, $x \neq y$ and (X, T) is a Hausdorff space, there exist some T-open sets U_y and V_y such that

$$U_y\cap V_y=\emptyset$$

Corresponding to fixed $x \in X - Y$, and any $y \in Y$ we have $V_y \cap Y$ a T_Y -open subset of Y and

$$Y = \bigcup_{y \in Y} (V_y \cap Y)$$

Therefore, $\{V_y \cap Y \mid y \in Y\}$ is a T_Y -open covering of Y. Since (Y, T_Y) is compact, the T_Y -open covering of Y has a finite subcovering, say $\{V_{y_i} \cap Y \mid i = 1, 2, ..., n\}$ corresponding to some points y_i in Y.

Therefore, $Y = \bigcup_{i=1}^{n} (V_{y_i} \cap Y)$. Hence,

$$Y \subset \bigcup_{i=1}^n V_{y_i}$$

Corresponding to each y_i there also corresponds a T-neighbourhood U_{y_i} such that $U_{y_i} \cap V_{y_i} = \emptyset$.

Let

$$G = \bigcup_{i=1}^n \ U_{y_i}$$

Clearly G is a T-neighbourhood of $x \in X - Y$ as each U_{y_i} is a T-neighbourhood of x.

Also as $U_{y_i} \cap V_{y_i} = \emptyset$ we have $G \cap \bigcup_{i=1}^n V_{y_i} = \emptyset$. Since $Y \subset \bigcup_{i=1}^n V_{y_i}$ we have $G \cap Y = \emptyset$. Therefore, $G \subset X - Y$. Therefore X - Y is a T-neighbourhood of x.

As x is any point of X - Y, the set X - Y is a T-neighbourhood of each of its points. Hence X - Y is a T-open set. Therefore, Y is T-closed.

32. If (X, \mathcal{T}) is compact and Y is a \mathcal{T} -closed subset of X, then prove that (Y, \mathcal{T}_Y) is also compact.

Proof:

Let (X, \mathcal{T}) be a compact topological space and Y be a T-closed subset of X. Suppose $\mathcal{S} = \{S_{\alpha} \mid \alpha \in \lambda\}$ be a T_Y -open covering of Y. Therefore,

$$Y = \bigcup_{\alpha \in \Lambda S_{\alpha}}$$

Also as each S_{α} is T_Y -open, there corrsponds some T-open subset G_{α} of X such that $S_{\alpha} = G_{\alpha} \cap Y$. Therefore $Y = \bigcup_{\alpha \in \Lambda(G_{\alpha} \cap Y)}$. Therefore,

$$Y \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}$$

Since, Y is T-closed X - Y is T-open. Since, $X = (X - Y) \cap Y$ we have

$$X \subset (X - Y) \cup \left(\bigcup_{\alpha \in \Lambda} G_{\alpha}\right)$$

As the collection $(X - Y) \cup \{G_{\alpha} / \alpha \in \lambda\}$ is a T-open covering of X.

Since, (X,T) is compact, the T-open covering of X has a finite subcovering. The subset X-Y is convered by only one T-open subset which is X-Y itself. So the open subcovering must include X-Y. Suppose the T-open subcovering of X is

$$\{X-Y,G_1,G_2,\ldots,G_n\}$$

Then, We must have,

$$Y \subset \bigcup_{i=1}^n G_i$$

Therefore,

$$Y=\bigcup_{i=1}^n (G_i\cap Y)$$

For, $S_i = G_i \cap Y$ we get,

$$Y = \bigcup_{i=1}^{n} S_i$$

Therefore, $\{S_i \mid i=1,2,\ldots,n\}$ is a finite T_Y -open subcovering for Y. Hence (Y,T_Y) is compact.

Rajesh P. Solanki