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Classical Mechanics

UNIT- Il Moving Coordinate Systems and Motion of a Rigid Body
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Introduction:

In many physical problems, we employ moving coordinate systems or frame of
reference. In such problems, we usually consider two frames, one fixed in the laboratory and
the other fixed on the moving system.

The laboratory frame used for observation can be termed as fixed frame. A moving
frame of reference, in general, can possess a translation or rotational velocity with respect to
3 fixed frame of reference. Sometimes, a moving frame may possess both translational and
rotational velocities relative to a fixed frame of reference.

A frame of reference moving with a constant velocity relative to a fixed frame is called
an inertial frame of reference.

A frame of reference is accelerated relative to a fixed frame is called non-inertial frame
of reference.

It is well known that rotational motion is always an accelerated motion. Hence, all
frame of reference that are rotating relative to a fixed frame of reference are the non-inertial
frame of reference.

The motion of a particle moving on the earth is usually described with reference to a
frame fixed to the surface or to the center of the earth. This frame is really a non-inertial
frame because of the earth’s rotational motion. In the analysis of the motion of a rigid body,
rotating coordinate systems are found to be useful.

Co-Ordinate Systems with Relative Translational Motion:

Let us consider two coordinate systems O'(x’,v’,z") fixed in space and O(x,y,2)
moving with translational velocity with respect to first frame as shown in fig. 2.1
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Let R be the position vector of the point 0 with respect to the point 0" at a certain
instant .

Let P be the point whose position vectors with respect 1o 0 and O' are ¥ and 1"
respectively. From above figure,

P=R4+T L (2.1)

Differentiation with respect to time gives,
Flo=R 47 .. (2.2)
Thus, the velocity ' of a particle at the point P in fixed frame is the velocity addition

of R and 1 . The corresponding accelerations are given by

I .. (2.3)
The equation of motion of the particle at the point P in the fixed frame is
mit' = F L (24)

Where, F is the total external force acting on the particle P. The equation of motion
of the particle at the point P in the moving frame of reference is
mi = mi' — mR
. mi =F —mR

.

womF = Fopy {25
Thus, if the moving frame of reference has an acceleration R, the effective force acting

on the particle at point P is smaller than the actual force by an amount mK. This reduction is

due to acceleration R of the moving frame.

When, ﬁ" = (), the etjuations of motion are identical in the two systems. In other
words, Newton’s laws of motion are valid in the two systems moving with a uniform relative
velocity. This is known as the principle of Newtonian relativity or Galilean invariance. The form
of equations remains the same in the two systems.

Rotating Coordinate Systems:

Let us suppose that the unprimed coordinate
system O(x,y,z) is rotating with angular velocity @
about the axis passing through origin. The fixed and
rotating systems have the common origin 0. The fixed
system is the primed system 0'(x", y", z'),

The unit vectors i",}’.ﬁ?' in the primed system

are constant unit vectors while £,k in the unprimed

system are changing their directions along with the
rotating axes.

The position vector of a particle at P can be
written as




Pl HIE * E'H;} . (2.6)
and, r=1lx+Jy+kz
The transformation equations from unprimed to primed system are
,r"—-(*-t”)=E-E'x+j-:"y+§-f';f )
= (F-])=0J2 4 J-Jy+k-jz } (2.7)
z-(‘*-k) k'x+j-k'y+k-k'z)

-~

The inverse transformations can be written as the dot product of r with 1, |
and k.

ki

The vector function V = F’(r) can be written as
V = Ve + JV5 +kV, =V + 'V, Vi + k'V) [ 2:8)
The time derivative will be different in two systems. In the primed or fixed system, we

have
dl? st R Er'r r(j
E = 'V, 4+ V},'{' V, sl )
fix
Since the unit vectors are constant vectors. In the unprimed or the rotating system,
the unit vectors are changing in directions.

id = iV, + jV. +f“l}’+dﬁv+d‘rv +d§b’ 2.10
.:irf = P Ty TRET dt dt «={Std)

The first three terms of above equation are the time derivatives of the vector in the
rotating system when the unit vectors i, j and k are treated as constant unit vectors.

dV . "
E =1[n”rx +JV}F+‘EV2=H *(2*11:]
rof

This is the velocity in the rotating system.
Now, the linear velocity U of the particle is given by
a. BY i o -
u=?ﬁ=mxr W (2.12)

This formula can be applied to unit vectors as a special case.
Since, i, J and k are the unit vectors in a system rotating with angular velocity @ , we have

at . Wy dk . |
‘&?'_m}{ i E={u /) and Ez w X K snlZd3)
Hence, equation (2.10) reduced to
dv B dv R
(E?)ru o (E)m[ +wxV (214)

Equation (2.14) gives the relation between the time derivatives in the fixed and
rotating coordinate systems. This is the operator equation like

(d) ——(d) + 3 % 2.15
dt fix - dt rot N M( | )

Now, we operate on @ , we get

B e e —
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This equation shows that angular acceleration @ is the same in the fixed and the
rotating system.

The second derivative of F can be find in a similar manner. Now, let us denote

d d’ (!l (!
(E)ﬁx S and (E)mt = . (2.17)
Then, we can write
d*vV d*(d*?) _d'[dV w]
dt? dt\ dt dt | dt
d'“V -~ dV
& dLEI[EE+{ux lat—-%-mxlf
d*V  d*V da - dv V. _ dV
172 = 172 + 7 xV+me+mx[E+me{]
d'*V  d%V dV _ d@
TS =F+2{uxd—+m><mx1"+ﬁxlz’ . (2.18)

The above relations can be used to obtain expression for velocity and acceleration of
the particle at P.

Now, consider the origin O of the rotating coordinate system is also moving with

respect to 0'. Hence, we have
dr’
) @, e
fix fix fix

Thus, by using equations (2.15), (2.16) & (2.18), we get

dr’ dR dr -
fix fix rot
And, '

a2 d*R . d2r . dr « B iR q)+dm e
= | —— —_— | — T _— X .
dt? dtz | \dt? wxX\gg) TerxternmT st (2:£1)
fix fix rot rot

In compact form equations (2,20) and (2.21) becomes,

:::r.l.+

F=R +F+@xT .. (2.22)
And,
ﬁf=E;+?}+2¢D’xﬁ.+ﬁx(£xﬁ)+¢ﬂxf ol 8:23)
Here, '

20 X f:,, is called the Coriolis acceleration
w % (w X 1) is called the Centripetal acceleration

M
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The centripetal acceleration of the particle at P is directed towards the axis of rotation and

is perpendicular to it. It has magnitude

e

|6 % (@ X 7)| = w?r sind = . (2.24)

rsing

Fig:2.3
Where, v = wr sin@ is the speed of the particle when it rotates in a circle of radius r sinf
as shown in fig.2.3 . The Coriolis acceleration is present only when the particle has a velocity

ﬁ- in the rotating frame.

The Coriolis Force:

Newton’s second law of motion F = m# is valid only in the inertial frames of

references.
4 d?7 :
F=m FTS) o ravasy

fix
We wish to write the equation of motion of a particle in the rotating system.
Let the angular velocity of the rotating system be constant, Then, @ = 0 and let the

origins of the fixed and the moving systems coincide. Then, R=0and? =7"
Equation (2.21) becomes

d*7 d°T ooz dr = 5 (5 X )
== =M\ —— - M X | — — ML X L X T
dte dte ) .. _ dt |
rot fix rol

d*r < o
S M m — FE” (EZE}:I
rot

Thus, the forces acting on the particle in the rotating frame are

- s
e TherealforceF=m (d—r)
fix

dt*

e The centrifugal force —-m @ % (@ X ), and

Y — dr
e« The Coriolis force —Z2mw X (-—)
At/ oyt
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The centrifugal and Coriolis forces are arising due to a non-inertial frame. These are

added to the force term F=m GITE)

. F + Non — inertial force = ﬁﬁ.” w (2.27)
Hence, the equation of motion of a particle in the rotating frame, the equation of

—_

motion resembles Newton’s law i.e, FF = mr.

Thus, for a satellite moving around the earth in the fixed system, only real force acting
on it is gravitational force that produces the centripetal acceleration. An observer in the
satellite, will experience only the effective force.

w Fopp=F—ma@x (@ x7) .. (2.28)

As the observer is at rest with respect to the resolving satellite. The centrifugal force
is balance the gravitational force. An observer in a freely falling lift will not experience any

force and will be in a weightless condition. An observer in a resolving satellite will also be in a
weightless condition.

Motion on The Earth:
A particle of mass m situated on the surface of the earth will be acted upon by the

gravitational force mg. Other real force F such as an electrostatic or a magnetic force may
also act on it.

Therefore, the equation of the particle is

d?7 . |
m (d?) =F+mg o (D)
fix
The equation of motion of the same particle in the rotating system is
m(dzf) =F+m[§—@x (@xT7)] 2‘"><<df) 2.30)
dt? rot a=ln o : dt rol ( |
The second term of above equation represents the effective gravitational acceleration
Ge=g—wx(@x7) . (231)
The gravitational acceleration at any point will be this effective acceleration and it will
be less than the acceleration due to the earth w

if it were not rotating. The term —@ X (w X 1)
is called the centrifugal acceleration as shown =

in fig.2.4, It always point radially outwards. 1
The centrifugal acceleration will be /- _
|

found to be zero at the pole. At the pole @ Il 7.

It has the maximum value at the equator, The -
earth rotates in an anticlockwise sense about

the North Pole with an angular velocity

-
o
.
-

Fig.:2.4
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1) 5 7.25 < 1077 rad
— — A - 4 ) :
W= 5% 60 x 60 R RS

The radius of earth r = 6.4 x 10%m, then the maximum centrifugal acceleration is
wir =3.4x 1072 m/s?
The third term of equation (2.30) is the Coriolis force that acts on a particle with 3

-

. d " : (g . .
velocity v, = (i) on the earth. The direction of the Coriolis force will be at right angles to
rol

the plane formed by v, and w.
Consider the effect of the Coriolis force on a particle situated at a point P and moving

with a velocity ¥ in a plane perpendicular to the axis of rotation of the earth and having
latitude Bas shown in figure 2.5

Fig.: 2.5

From figure it is clear that é, and é,, axes from a horizontal plane at the point P while
é, - axis is vertical. The component of @ along the vertical direction is w,e, = é,w sinf and
_is directed upward in the nérthern hemisphere and downward in the southern hemisphere.
Hence, the path of the particle will be deflected towards the right in the northern hemisphere
and towards the left in the southern hemisphere due to the Coriolis acceleration.

The maximum magnitude of the Coriolis acceleration is at the north pole(Fig.2.6) or
south pole and is given by

201, = 1.5 x 10™*v,
Where, 1. is the velocity in the horizontal plane.

Fig: 2.6
The component of @ along a vertical direction in a local coordinate system at the
equator will be zero. Hence, the Coriolis force acting on a horizontally moving particle will be
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zero. The magnitude of the Coriolis acceleration is small, it plays an important role in many
phenomena on the earth.

The effect of Coriolis acceleration is important in the flight of missiles, the velocity and
the time of flight of which are considerably large.

Another terrestrial phenomena in which the Coriolis force plays an important role is
the formation of cyclones. Whenever a low pressure region is formed, a mass of air will rush
to this region from all directions. But, due to the Coriolis force, it will be deflected in the
northern hemisphere as shown in fig.2.7

Fig: 2.7
Thus, in a cyclone the wind whirls in the anticlockwise sense in the northern
hemisphere. The sense of rotation of wind will be clockwise in the southern hemisphere.

Effect of Coriolis Force on Freely Falling Particle:

Consider a particle is falling freely towards the earth. Let 'h' be the height of the
particle from the earth be so small. Hence variation in ‘g’ can be neglected.

The acceleration of the particle is given by
d=(0—20 XV O (74 .4y
Where, d and v are measured in rotating frame with respect to the earth.
In the northern hemisphere, we have
w, =0,w, =wcost and w, = w sind A 2233 )
The deflection produced by the Coriolis force is small. Hence, for a particle moving
along —é, direction, the component of forces along é,, and é, are negligible.
wx=0,y=0 and z = —gt . (2.34)
Hence, w X U = —wgt cosBé, lie along x — direction.
As g is directed along the —é, direction, the components of the acceleration of the
particle are

a, =X = 2wgt cosl R )
a, =y = .. (2.36)
Ay =Z = —9 s L2 7T)

The acceleration along €, direction is due to the Coriolis force.
Now, integrating equations (2.35) and (2.37), we get
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1 .
X = §{ugtj cosf ..(2.38)

And, Z=Zy— égtz - (2.39)

The initial conditions are

z(.[]) =7, and .I(U) = D} . (2.40)
x(0) =0 and 2(0) =0
From equation (2.39), the time of fall from height is
2h
R i . (2.41)
Y
Hence, the deflection of a particle towards the east is given by
1 2h\3% 1 gh3\ "/’
% 3 . — = e | — (242
X Emggﬂsﬁ(g) Emm H(ﬂ) ‘ ( )

If a particle is dropped from a height of 100m from rest at latitude 6 = 45, it will be
deflected by about 1.55 X 10~ %m. Here the effects of wind, viscosity etc. are neglected.

Euler’s Theorem:

Statement: Any general displacement of a rigid body, one point of which is fixed, is @
rotation about some axis passing through the fixed point.

As ane point of the body is fixed, the body does not have any translation motion.
According to the Euler’'s theorem, we can find out a single rotation about some axis.

Let us take the body-system of coordinates such that the origin of the system coincides
with the fixed point. In the rotation motion, the position vector of any particle in the body
does not change in its magnitude.

The theorem would be proved if we can find a straight line i.e. the axis of rotation such
that the distance of the particles of the body from this straight line remains constant during
the rotation.

Let A and B be the initial positions of two particles in the rigid body. A" and B’ are the

new positions after some arbitrary rotational displacement. Let O be the fixed point as shown
in fig. 2.8

#_..--‘--.%B .
7 bl I
B T "
P \
y o |
! — L I
o NEEHIE
e ‘ A
M
¥ —

Fig.:2.8
The body was in the initial configuration OAB and its final configuration is OA'B’". Let
us draw two planes P;and P, perpendicular to the planes of the triangles OAA" and
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OBB' respectively. The planes intersect each other along the straight line OC. Now, every
point on the plane P;is equidistant from points A and A'. Similarly, point Band B are
equidistant from plane P,. The distances of the oarticles A and B from the straight line OC
before and after rotation are equal. Hence, the straight line OC is the axis of rotation.

When the body is brought from the initial configuration OAB to its final
configurationOA'B’, the line OC remains unchanged and the displacement is equivalent to a
rotation about OC.

This configurations helps to understand another important theorem namely Chasles’
theorem. It states that the most general displacement of the rigid body is a translation plus a
rotation about some axis. The Chasles’ theorem gives an idea to separate the motion of the
rigid body into translation motion and rotational motion.

Angular Momentum and Kinetic Energy:

Consider a rigid body composed of n particles having masses mg (a=12,...n)3anc
rotating with angular velocity w.

Let one of the point in the body is fixed. Hence, translation motion is absent.

We shall find the expression for the angular momentum and the kinetic energy due to
the rotation of the body.

The linear velocity U, of the particle of mass m, and position vector r, with respect to
the fixed point is given by

U, = @ X T, .. (2.43)

The total angular momentum L is the sum of angular momenta [, of the individual

particles and is given by
E=Zfﬁ=2ﬁ1xmﬂﬁn

=1 i1

e zmﬂfﬂ LT3 M)

=

— —

il
Using vector triple product 4 x (B x ) = B(A-C) — C(A - B) we get,

Z st Ty M) — Z M, Ty (T * @)
a

{1

o L= Z myria — Z my (1, + @)1, . (2.44)

o a
Now, the x — component of the angular momentum is given by

Ly = Z Ml Wy — Z ma[xa“-’r + Yoy + zamz]xﬂ

L

Il

a ¢
VoL = Z malnE — x&) Wi — z MaXaYaWy — Z MaXaqZaW; ..(2.45)
a (1 E1
Now, introduce the following symbols for the coefficients of w, , w, and w,.
lyx = Z ?nﬂ(rﬂz - X5) = z Mg O+ z5) .. (2.46)
il €l
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lyy = Z ma(ry — y5) = Z mq(2s + x3) .. (2.47)
(i

Z mg(rf —z%) = Z mg(xz + y&) .. (2.48)

Ll

ey = —Z MaXaVa = lyx . (2.49)
4]

ly, = — Z MaYaZa = lzy . (2.50)
{

Ly = — Z MaZaXq = lxy (%)

i

With these substitutions, equation (2.45) and the other components of the angular
momenta can be written as,
Ly = bty + Ipyy ¥ 1wy
Ly =lyw, + 10, + 1w,
Ly = Ipnwy+ 155wy, + fﬂcuh

i

w0 (2.50)

The quantities I, , 1y, and I,, are called the moment of inertia about x , y and z axes
respectively and I, , I, and I,, are called the product of inertia.
If we denote x , y and z axes by 1,2 ,3 respectively, then reduce form of equation

(2.50) i
L!' =Z!uiﬂj (251}
‘.

Where, 1 = 1,2,3
The coefficients /;; can always be calculatec if the distribution of particles about the
axes is known.

The kinetic energy of the rigid body can be calculated on similar ways.
We have,

|
T = Zimﬂvg}’ . (2.52)
' a

' = ZmﬂlvaF - Z?nﬂ('ﬂ x ﬂtj (W X T1,)
a

o

o

= o [fy % @ % 7)) = & > iy X (@ X 7)
e

2T=E-Zmﬂf’ﬂxﬁﬂ= a1

L ]

1
e Pl =§EJ"L s kD)

Above equation can also be written as,

1 4
T=EZM5L¢' ZEZI*""EU"M" (254;}
| bl

Above equation becomes

1 . - |
I'= > [J’Hruﬁ e .’wmf; + 1,2 + 21, yWyy + 21, wyw, + 2.-'3_1(111:,_.{”1] i {2.55)
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If the body is rotating about the z — axis with the angular velocity @,
Then,

w, =w and wy = wy =0
~ Equation (2.55) becomes,

1 1
T = E!ng = E :"mz
1, |
1 = *2- .’m (256)

Where [ is the moment of inertia of the body about the z — axis.
The components of the angular momenta are,
Ly = Listiy, Ly = ly,w, and L, = l;w; 2 k2D

This shows that the directions of the angular velocity and the angular momentum are
different.

Let us consider a simple system of two particles having masses m, and m; connected
by a rigid rod of negligible mass. The system is rotating with angular velocity @ as shown in
fig.2.9

Fig:2.9
The angular momentum of the system is given by

L = mFy X By + MyTy X U, ..(2.58)
The angular momentum L, must be perpendicular to the connecting rod and is not
parallel to the angular velocity @,

As the particles rotates, the vector L which lies in the shaded plane as shown in fig:2.9.
But it is perpendicular to the rod, also rotates and traces a cone with vertex at the point 0.

Thus, E + () and according to the equation of motion
L=N .(259)

Hence, a torque N must be applied to maintain the rotation of the system about the
given axis.
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The Inertia Tensor:
The nine terms [;; can be treated as the components of the moment of inertia of the

rigid body. Each component is a scalar and has the dimension of [M'L?]. There are nine terms
(3¢) of the component. Hence the moment of inertia is a tensor of rank two.

The moment of inertia tensor or the inertia tensor is denoted by T. In matrix notation
fn' ;x}* fx:-:
I'=|hx Iy by . (2.60)
‘f:f:r -'fz;-.f 22
The moment of inertia tensor is symmetric. i.e.
lig =1
Hence, it has only six independent.
If the matter is continuously distributed and the density function is p = p(7) in the
body, then moment of inertia is

5H=fpﬁnﬁ-x%m (261)
And the product of inertia is
l9.=— j p(r) xy dr . (2.62)

We have

L = Z lijwj Here,i =j =1,2,3, ...
:

Above relation can be written as the dot product of the inertia tensor and the angular
velocity vector.

L=1 & . (2.63)
Now, the kinetic energy is
1 SRR [N——
Ecu-inm-I-m - (2.64)
If the inertia tensor has only the diagonal elements then above equations (2.63) &
(2.64) can be written as

T

L = liw < (2:68)
And '

1 :
T = = [[.0w? + Lw? + Lhws] .. (2.66)

Thus, all the product of inertia are zero and the moment of inertia [,/ and /5
are the non-zero elements.
Since, I;; is symmetric by choosing the axes in the body such that the products of
inertia are zero. These axes are called the principal axes of inertia.

e |f the three component of the moment of inertia about the principal axes are equal
i.e. [, = I, = I, then the body is called a spherical top.

e If two of the three components of the moment of inertia about the principal axes are
equal to each otheri.e. I, = I, # I3, the body is called a symmetrical top.

e |If all the components of the moment of inertia about the principal axes are different,
i.e. I, # I, # I3, then the body is known as an asymmetric top.
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e A body for which [, =1, and I; = 0 is called a rotator. For example, diatomic
molecule. |

Euler’s Equations of Motion:

Consider a rigid body, one point of which is fixed. Let N be the torque acting on it.
Then the equation of rotational motion of the body in a fixed or inertial frame of reference is

given by
{L y
G—) Y 267
ct
fix

(d) (d) + @ % (2.68)
T m— | P i R
dt/ iy dt/ o N

The rigid body is rotating with angular velocity w. We shall fix a frame of reference.

But, the operator is

Hence, equation (2.67) becomes

N-{E _ (% +@xL (2.69)

= \ae/) “l\ag) T¢ R
fix rot
But,
dL dL d
(—) - (E) =[5 9)
rot body body

, [ =1 2.70)
| at rot B ’ ( | |

But, w is same in the fixed and body frames of reference. Using equations (2.70) in (2.69)

—_—

N=Ta+@&xL . (2.71)

If we orient the axes of the body frame of reference such that they coincide with the

orincipal axes of the body. All the product of inertia will then vanish and the component form
of equation (2.71) becomes

Ny = Loy + (s = 1) waws )

N, = Lw, + (I} — l3)waw,

Ny = Iz + (I — I))wiw;)

a

. (2.72)

Equation (2.72) is known as the Euler’s equations of the motion of a rigid body.

The solution of Euler’s equations gives that how angular velocity changes with respect
to the time and with respect to the principal axes. Hence, we should know relative change in
@ and L.

If the torque acting on the rigid body is zero, then according to the law of conservation

of angular momentum, the angular momentum L is a constant of motion. Hence, equation
(2.69) becomes




Thus, in a torque-free motion, 1@ is parallel to @.
Now taking dot product of equation (2.71) with w.

—

: fﬂ-N=fﬁ'F'$+cﬂxE]

s e d@D L
=Wl = (ben‘mtgem-m XL = U)
dw - _,
= s
n@-N= %%(5 T @) . (2.75)
But, T=,—;E,:’-T-cﬂ
Hence, equation (2.75) becomes
. g, e
) N=-2“£E w [ {.L]')
I A
w- N =E ...{2,?5)

Above equation gives the relation between the rate at which work is done by the
torque and the rate of change of kinetic energy.

TORQUE FREE MOTION:

The motion of a free symmetric top is the simplest type of the motion of a rigid body
in which the torque acting on it is known to be zero. A body is called a free symmetric top if
I, =1, # 1.

.. We get the component of the torque

Ly = (I = I3)wws v (2.77)
Igmg — (’fl = 1‘3){1}3&]1 s (21?8:}
and Ilywy =0 w (il D)

Equation (2.79) shows that the component of the angular velocity w4 along the
Z —axlis is constant.
" Wy = const .. (2.80)
Equations (2.77) & (2.78) can be written as

Ut - ;3)'3*'-’;.#}
{UE

{J:JI —
l;
. Sfowq = fwy w281
Similarlly, w, = —w; v (2.82)
I, — I
where, 0 =— .f = w; = const : (2:83)
1
Now, differentiate equation (2.82) with respect to time "t
{;'...:'1 = ﬂ(ﬂz
= N%w, (Using equation 2.82)

o d']l -—_ _ﬂE{U] i (2.84)

The solution of equation (2.84) is
w; = Asin(2t + 6,) i 2.85)
Where, A and 8, are the constants.
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Substituting this value of w, in equation (2,82) and integrating it, we get
w- = Acos(2t +6;) .. (2.86)
Thus, components w, and w, of the angular velocity change in such a manner that
their resultant w, isin the XY — plane and it rotates with angular frequency f2.
| Wy = lwy + jws «: (2:87)
The sense of {2 is the same as that of w, if I; > I and opposite to that of w5 if [} < I3
The magnitude of this vector is given by
@, | = A .. (2.88)
Since, ws is constant. Hence, the magnitude of the angular velocity & is also constant.

|| = Jmf + Wi+ wi = Jmﬁ + ws = JAE + wi = const.  ...(2.89)

Thus, the angular velocity vector @ rotates about the body z — axis describe a core
with the vertex at the origin as shown in fig.(2.10)

¥

Fig: 2.10
This motion is called precession and the body is said to precess about the z — axis with
precessional velocity 2. The cone described by the angular velocity vector @ is known as the
body cone.

The half angle a,, of the body cone is given by

A
tan o, = ™ ..(2.90)
3

The constants w4 and A can be calculated in terms of the kinetic energy and angular

momentum.
We know that,
i 1 5

T :El']_zq +§1'3ﬁ.l3 ...(2.91)
and, L? = [ A* + I§w] i/(293)

From equation (2.93), we have

. LF = 1iws
Ay ..(2.94)
i

Substituting this value of A“ in equation (2.91)
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1,-' g
+ oW
5 1343

s 7.
LR . -}:3 i # f;'ifug
2Ty = L — w3 + 11503
n Bwd— Lot =L1% - 2Tl
v wi(13 =1 1) = L2 = 2T
L? — 2T,
"f;% =iy
L4 =2TE
‘:3("3 o fl)
Putting this value of w4 in equation (2.93), we get
Ls =271,
*!‘.1“.? o ’11]‘
;L% = 2T 11,
I5 — 1
I3L% — 2T 15
"':5 o JII1
A2 = [sL% — 1 L5 — 1,07 + 2T, 14
A" T3 = 1)
[,(L* = 2T1y)
1£(l; = 1y)
B L* = 21T
LU= 1y)
 In a torque free motion of a rigid body, the angular momentum of the body is a

1 I'L'“ — l{w?
ly

I§

. {UH -

.. (2.95)

-

L= 0A" 918

s LE = 1A%+

v IFA* = 1P -

Al =

2

.. (2.96)

constant vector.
e Angular velocity a precesses about the z —axis which is also rotating with respect to
the axes of the fixed frame of reference.

Now, the angle between the two vectors @ and L can be defined as

w "L
COS U =
> wl,
Wl w
v COS s =
& ﬂJL
2T
" COSdy = — R o il
wl,

From above equation, an angle «; is found to be constant. Thus, vector @

rotates about vector L in a cone with half angle @..The position of vector L is fixed
with respect to the space axes and hence the cone is called the space cone.
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Fig: 2.11
The motion of the body cone rolling without slipping on the space cone is
shown in fig. 2.11

Euler’s Angles:

Consider the motion of a rigid body to a body frame of reference and the axes of which
are coincident with the principal axes of the body. These axes rotate along with the body.

We now introduce axes fixed in space and label them O(XYZ). These axes form an
inertial frame of reference will be denoted by 0(123). The third axis will be the axis of
symmetry.

The orientation of a rotating body can be completely specified by giving three angles
called Euler's angles. These angles are then the generalized coordinates used for locating the
rigid body.

Let the fixed axes be rotated through angle ¢ about the Z —axis as shown in
Fig.(2.12a). The X —axis then takes orientation O¢ called the line of nodes. Now rotate the

XY —plane about the line of nodes through angle 6 as shown in Fig.(2.12b).
VA




' X
ina of nodes §

(¢) ()

The Y and Z — axes in the new position are denoted by On and O(. Thus, we get a
new system of coordinates(én{). Then, a rotation through angle ¥ is carried out about the
{ —axis, as shown in Fig.(2.12c) to bring the axes of coordinates to the final configuration
0(123) as shown in Fig.(2.124d).

In this configuration, these axes are coincident with the axes of the body frame of
reference. The rotation ¢, # and ¥ are carried out in the same order. These are the three
angles used to locate the body with reference to the fixed axes.

It should be noted that {(3), Z and n axes are in one plane. As the body rotates, the
1,2, 3 axes and the & , 1, { axes also rotate relative to the X, ¥, Z axes.

Angular velocities ¢, 8 and ¥ are directed along the axes of Z, £ and 3 respectively.
If the body is spinning about axis 3, then Y represents the spin angular velocity.

e |[fthe bodyis spinﬂiﬂé about axis 3, then ¥ represents the spin angular velocity.

e When,f# = 0, angular velocity cj;: represents the angular velocity with which axis 3 1s
rotating about the Z — axis. Hence, ¢ represents the precessional velocity.

e Axis 3 moves on the surface of a cone which has semi-vertical angle @ and 0Z as its
axis. Angular velocity 8 indicates that axis 3 may not remain on the surface of the
cone. This motion is called nutation. =

e Thus, in general, a rotating body can
perform three types of motion. (i)
spin motion (ii) precessional motion,
and (iii) nutational motion.

Let the angular velocity of the body be @

which has components w,, w- and w4 about

the principal axes of the body frame of
reference. We can resolve w along the ¢ , 17,
{ axes. The axes (123 )rotate with an angular
velocity ¥ about axis 3 relative to the
End —axes.

From above Fig. 2.13, we can write

#
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Wg = g Wy, = rp sinf, w; = Y 4 c;r‘} cost . (2.98)
These components resolved along the 1,2,3 axes and we get.

Wy = wg COSY + wy sin'¥ = 6 cos¥ + ¢ sin@ sin¥ )
Wy = — we SIn¥ + w, cos¥ = —0 sin¥ + ¢ sinf cos¥ ..(2.99)
wy = w; =¥+ ¢ cosl |

The kinetic energy of the body is
1 5 . _
T=E(Il{uj' +:"2{U§ +.’3ﬁd§) (210[}:}
For a symmetric top [, = [, and the kinetic energy becomes
BT T 1 . ; _
T ==5(6% +0%sin?6) + Sh(#+ ¢ cosB)’ . (2.101)

Equation (2.101) shows that, for a symmetric top, kinetic energy T depends upon only
one generalised coordinate 0.

Motion of a Symmetrical Top:

Consider the motion of a symmetric top spinning about the axis of symmetry like axis-
3. The top is fixed at its lower tip and is acted upon by gravitational torque as shown in
fig:2.14. Let the centre of mass of the top at distance [ from its tip.

Fig.: 2.14
The Lagrangian function for the top is given by

it TR
I, = 5!1 (62 + 02sin*6) + EIH(*F + ¢ {3056‘)2 — myl cosB + (2:102)
Here, ¢ and ¥ are absent. Hence p, and py must be the constant of motion.

The third constant of the maotion is the total energy £.
aL

Since, o 0, i.e. the Lagrangian does not depend upon time. Thus, the first integrals of the

motion are
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oL : ,
Pp = —F = 1'3(‘1” + ¢' CDSQ)

ay
iy X p]_p — .IJ"EI':LI.'E i (2+103)
dL o . .
Po === = [,@ sin?8 + 13(¥ + ¢ cosB) cosb .. (2.104)

The total energy is given by
E=T+V

. E= %fj (8% + 0%sin®8) + %:’S(lﬁf + ¢ :::u::a:yﬂ)‘2 + mgl cos0
1 1
2 ;)
This expression of total energy E can be written in terms of momenta py and py.
Using equation (2.103) in (2.104), we have

Pe = 1,@ sin6 + py cosé

: . 1 : . -
wE = =1,0%+ = 1,0%sin0 + -2-!3(*:” + ¢ 4r;'f::ur.'ﬂ’5‘)'E + mgl cosf ..(2.105)

. Pp — Py cosf
= , sl 2106
¢ lsin%6 1)
Using equation (2.103) in (2.105), we have
P (SRR M
E ==1,62%+=1,0%sin%6 + — + mgl cosd .. (2.107)
2 2 215
Substituting the value of ¢J from equation (2.106) in (2.107), we get
1 .. 1 [pg—pycosfl®  py’
E==16° -—f[ , ] — S
51 T 54| I.sin2@ + o0, + mgl cost
1 ., (pp—pycos6) py?
w E == 5.2 LA » _
2.’1 + 21 5in20 e o + mgl cos@ (2.108)
2
Since the term i—t’— on the right hand side of equation (2.108) is constant.
.
We introduced another constant £’ denoted by
AN saaf] N2
Py 1 . (Po — Py cos0)
F'=F ——— = — Z 3
2 2!,8 + 21, SinZ8 + mgl cos6
p* 1 .
W B =E—-—==-16°+V(0) «(2.109)
205 2
Where,
(Po — py cos6)*
Vig) = . ‘ .
(8) 21 5?0 + mgl cosf (2.110)
Here, V(8) is the effective potential energy. It depends upon # alone.
From equation (2.109), we have
e'—dﬁ— ZIE’ V(6)] 2.111
== o V) ~(2111)
The solution of above equation is,
t(0) = . (2.112)

do
f jﬁ{ﬁf - V()]

= e L = — = P =T e e e N S N S
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Knowing t(8) or 8(t) , we can obtain the value of @(¢t) and ¥(t) from equations
(2.103) and (2.104). |

This method of solution involves elliptic integrals and it is very difficult. For this, we
use the method of energy consideration used in the central force field method.

Consider the variation of effective potential energy V(6) with 8. The effective P.E
ranges between # = 0 and 6 = m, and becomes infinity at the end values as seen from
equation (2.110).

Now,

aV(68) (pp— py cosB)(py — py cosb)
6 l,5in36

: 8y . .. = g ,
For pp # py, the quantity% is (i) positive for @ — 1, and (ii) negative for 8 — 0.

— mgl sinf o s L1131

It has zero value between 0 and 7. The variation of potential energy V(8) with 8 is
shown in fig.2.15 ‘

v(e)

i
E
. i \
[ I !
: * -
| | |
9] o 5
e, 8,77 A El T
Fig.: 2.15
The value of angle 6, when the potential energy V(@) is minimum, is given by
equation (2.113) when dl{;f}: 0.
Thus,
(pp — pw €050) (py — pg cosB) = myll;sin*@ .. (2.114)

If the top has energy E' = E; , then we get two values 8, and 6, of angle 6. These
represent the two turning points. The motion of the top is now restricted between two values
6, and 8,. Thus, the axis of symmetry performs nutational motion confined between values
¢, and 6,.

The two turning points coincide if the top has energy E' = E, which corresponds to
the minimum value of V(6),

If the axis of symmetry is inclined at angle 6,, the top precesses uniformly about the
vertical z — axis.

The precessional velocity of this uniform motion is given by equation (2.106).

Po — Py €056y
l:5in%8,
Let, py — pw c0sB, = b, then equation (2.114) becomes
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bzﬂﬂﬁgu = EJIJ:;JSEHEGU + m.lgf'flﬂi”49u -_— [] s (2+] lﬁj
Equation (2.116) is a quadratic in b and its roots are given by

22 | :
pysincd, 4dmgll costy |
b = py — py COSHy = 1+ |1- 81T
Po — Py CO5U, 2c0506, _\J P2 ( )
Since b is a real, the term under the square root sign is positive.
Hence,
. i
py = 4mgllcosty,  forby < 3 .. (2.118)
- . N
For 8, > S itis always positive,
Now, pw = [;w4, Hence condition (2.118) becomes
(I,wy)? = 4myllcosO,
2
Wy = —\/mngmEE’ﬂ : aakd 1Y)

k& ‘I'H

This is the condition that must be satisfied by the value of w; if there is to be a
precession without nutation.

The equality in condition (2.119) gives the minimum spin angular velocity at which the
top will be just able to perform precession without nutation. If the spin angular velocity Is
below this value, the top will not be able to perform uniform precessional motion.

For a given value of 8,, there are two values of precessional velocity @ given by
equation (2.117).

Thus, for a given spin angular velocity of the top thrown at angle @, the top will start
performing precessional motion with two possible velocities in the same sense-one |s greater
than the other.

When velocity wq and hence py is greater, i.e. in the case of a fast top, the term under
the radial sign can be expanded to give
F}{F .I'IH{'IJ'H

A g, = - .. (2.120
Do fast 21,cos8y  21,c080, ( )
Similarly, for the slow precession
: mgl mgl
= ——=— . (2.121
mﬂ slow Py ".3'-'“3 { )

It is normally the slow precession that is observed in a rapidly spinning top.
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Question Bank

Multiple choice questions:
(1) A frame of reference moving with a constant velocity relative to a fixed frame is called

frame
(a) inertial ' (b)non inertial
(c) real (d) imaginary
(2) A frame of reference is accelerated relative to a fixed frame is called
frame
(a) inertial (b) non inertial
(c) real (d) imaginary
(3) All the frames of reference that are rotating relative to a fixed frame of reference are
the frame of reference
(a) inertial (b)non inertial
(c)real (d) imaginary ;
(4) If the moving frame of reference is accelerated the effective force acting on the
particle is than the actual force
(a) zero (b) equal
(c)smaller (d) higher
(5) Newton's laws of motion are valid in the two systems moving with a relative
velocity
(a) accelerated (b) double
( ¢ ) non uniform (d) uniform
(6) The term @ X (@ x ) is called
(a) linear acceleration (b) angular acceleration
( ¢ ) centripetal acceleration (d) coriolis acceleration

(7) The term 2@ X (Z—r) is called

rot

(a) linear acceleration (b) angular acceleration
( ¢ ) centripetal acceleration (d) coriolis acceleration

(8) In a rotational motion centripetal acceleration directed to of the circle
(a) upwards (b) outwards
(¢ )inwards (d) centre

(9) In a cyclone the wind whirls in the sense in the northern hemisphere
(a) upwards (b) downwards
(¢ ) clockwise (d) anticlockwise

(10) In a cyclone the wind-whirls in the sense in the sourthern hemisphere
(a) upwards (b) downwards
(¢ ) clockwise (d) anticlockwise

(11)In the rotation of a rigid body the directions of the angular velocity and the angular
momentum are

(a) same (b) different
(¢ ) perpendicular (d) parallel
(12)The moment of inertia is a tensor of rank
(a) one (b) two
( ¢ )three (d) zero
(13) A rigid body have degree of freedom
(a) one (b) two
(c)three (d) six
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(14) If I, = I, = I, then the body is called

(a) spherical top (b) symmetrical top
( € Jasymmetrical top (d) rotator
(14) If I; = I, # I3, thenthe body is called
(a) spherical top (b) symmetrical top
( ¢ Jasymmetrical top (d) rotator
(15) If I; # [, # I5, then the body is called
(a) spherical top (b) symmetrical top
( ¢ Jasymmetrical top (d) rotator
(16) If I, = l,and I3 = 0, then the body is called
(a) spherical top (b) symmetrical top
( c Jasymmetrical top (d) rotator
(17) In a torque free motion of a rigid body, the of the body is a constant
vector
(a) angular velocity (b) linear velocity
( ¢ Jangular momentum (d) angular acceleration
(18) must be applied to maintain the rotation of the system about given axis
(a) force (b) momentum
[ ¢ Jvelocity (d) torque
Short Questions:
1. Define rigid body
2. Define frame of reference
3. Define inertial and non-inertial frame of reference
4. Find the angular velocity of the earth
5. State the Euler’'s theorem
6. State the Chasles’ theorem
7. Write the expressions of components of angular momentum
8. Derive the expression of kinetic energy of rotation of rigid body
9. Show that the directions of the angular velocity and the angular momentum are
different
10. Define spherical top and asymmetric top
11. Define symmetrical top and rigid rotator
12. What you mean by torque free motion
13. Define precessional welocity

Long Questions:

o D

Lol e B Al

Explain the coordinates with relative translational motion

Discuss the rotating coordinate systems and derive the expressions of velocity and
acceleration of the particle.

Write note on Coriolis force

Explain the motion of the earth with necessary diagrams

Discuss the effect of Coriolis force on a freely falling particle

State and prove Euler’s theorem

Derive the expressions of angular momentum and kinetic energy

Discuss the inertia tensor of rigid body

Derive the Euler’'s equations of the motion and find the relation between the rate at
which work done by the torque and the rate of change of kinetic energy
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10. Discuss the torque free motion of a rigid body and derive the expression A* = L eto)

11. Discuss the Euler’s angles of the rigid body with neat diagrams
12. Discuss the motion of a symmetrical top and derive the expressions of its total energy

and precessional velocity
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