B.Sc. (Semester - 5)
Subject: Physics
Course: USO5CPHY21
Classical Mechanics

UNIT- IV Hamiltonian Formulation

Introduction:

The Lagrangian formulation is alternate method of Newtonian formulation to solve
some physical problems. There exists another powerful theory known as the Hamiltonian
formulation which is an alternative to the Lagrangian formulation. It is convenient and
useful particularly in dealing with problems of modern physics. No new physical concept is
introduced in this formulation but we get another tool to work on the problem in physics.

In this formulation, we obtain Hamilton’s equations of motion for a system with n degrees
of freedom. We shall assume that the constraints are holonomic and the forces are
derivable from potentials which depend either on position or velocity dependent.

Hamilton’s Equations of Motion:
We know that

H= > pidi= L 4ot - (4.1)
Let the Hamiltonian be the function of generalised coordinate g; and generalised momenta
p; = j—i i.e. g; is replaced by p;.
4i
vdH = Z on —dq, + . dt 4.3
8;},{ aqk LT s
The differentiation of equatmn (4.1) is
al = Zpkqu +Zq,{dpk —dL . (4.4)
Since, L= L(q,-,q!-, t)
dl= Y — +Z A + 2 dt
I @qk A4 3, kT gt
_
But, Pi = e
afh:

Using equation (4.5) in (4.4), we get

dlL
dH = Zpkd% T Z qrdpy — qu Zpkdﬁ’k - _f“

*iH-Z'd ZaLf dt
== G 7= i qr APy : aqkf%*—g

o — -
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~dH = Z qQrdpy — Z Prdq __df . (4.6)

Comparing the coefficients of dp,, and dqy in equatmns (4.3) and (4.6), we get

dH
y (T Sp— kS
s apk ( )
dH
Yy, = — (4.8
and , Py 3ar (4.8)

Equations (4.7) and (4.8) are called Hamilton’s equations or Hamilton’s canonical
equations of motion. They are a set of 2n first order differential equations of motion.
Also comparing the coefficients of dt in equations (4.3) and (4.6), we get

dL. dH
—— = — . (4.9)
dt ot
» If H does not involve a particular coordinate g, then % = ()
- =0
“ Py = const.

Such a coordinate g, is called cyclic or ignorable coordinate. Thus, a cyclic coordinate
in the Lagrangian will be absent in the Hamiltonian.

Since,
e ‘H (pka- ‘-'?;;; 't)
The total time derivative of H gives,
dH dH dH dH
dt ~ £idqy e T Z TN TS A:10)

Using Hamilton’s equations (4.7) & (4.8} in abmve equation (4.10), we have

dH JdH
ZFHJ{ ‘*'Zf?n-??k T
dH al

|

i . (4.11)
Using equation (4.9) & (4.11), we get
dH _dH  0OL
fiee B o .. (4.12)
If the Lagrangian does not involve time explicitly, then ‘;—i = ()
’ dH -
2 E = [
~ H = const. .. (4.13)

Thus, the Hamiltonian H is a constant of the motion.

For conservative system, when the potential energy is not a function of velocities ,

i.e. & = = (), then
aq i
H=T+V = const. . (4.14)

Hence, H is the total energy of the system.
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Applications of the Hamiltonian Formulation:
(a) A Simple Pendulum with Moving Support:

A pendulum of mass m is suspended from a support which is moving along a straight

horizontal line as shown if Fig.(4.1)

A

L —- -

Fig:4.1

Let, PQ) = [, then the coordinates of P are
X=10lcos8 and Y=y +1 sin#
# X=-lfsinf and Y =y+10cosh
Now, the kinetic energy of the pendulum is
I 1

NS ... ¥2 4 52
T——va zm(k’ +Y?)

& T = -z-m[fﬁﬂzsinzﬂ + v?% + 2ly6cosh + 1*H%cos?0

1 . . .
s T = Em (j/‘g + 1°0° + ZEySCDSS)

Its potential energy with respect to its vertical position when 8 = 0 is,

V =mgl(1—cos8)
Hence, the Lagrangian is given by
L=T-=V

1 : :
“L=sm (V2 + 12602 + 21yfcosh) — mgl(1 — cos 6)

S Z Prdr — L
k

«H=p,y+peb - L

The Hamiltonian function is

But,
- 20 )+ mlé cos @
py = 3y = my + mlé cos

.. (4.15)

.. (4.16)

o (417)

.. (4.18)

ﬂ
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~ py =m(y+16cosb) .. (4.19)

And
= — =ml?8 + mlycos @
Po PY: y
. pg =ml(l + y cos0) .. (4.20)
Using equations (4.19) , (4.20) & (4.17) in (4.18), we get

: s 1 1 .
H=my(y+10cos®)+mlé(l6 + ycosh) — S (y? + 1262 + 21yBcosh)

+ mgl(1 —cos8)
W H = m{j@ + ylO cos @ + [“6° + 10y cos !9] —5m (}?2 +{26% + 21y6cosh)
+ mgl(1 = cos @)

1 ; . . -
s H= 7 M (V2 + 1%6% + 21yBcosh) + mgl(1 — cos 0) .. (4.21)
Substituting the values of y and |6 from equations (4.19) & (4.20), we get
1 Pg  2PyPe :
— 2 . = .
H = T Pyt T2 I cos@| + mgl(1l —cos8) .. (4.22)

Since y is cyclic, the momentum p,, is a constant of motion. Equation (4.22) is Hamilton's

equation of motion in terms of momenta.

(b) Charged Particle in an Electromagnetic Field:
The Lagrangian for a charged particle in an electromagnetic field is

1 2,
L=T~-=V =§mv2+—q¢;+q(ﬁ-ﬂ) . (4.23)
Hence, the canonical momenta are given by
L + g4
= —=mv :
Pk v, kT qay
Thus,
p = Zék'ﬁk = Z éx(mvy + qAy)
k k
p’ = muv + qA ...(4.24)

The Hamiltonian function is given by

k
e = Z p;{vk L
K
1 o
H= Z(mv;{ + QAL )V — [Emu" —qo + q(u A)]
k
i
. H — Emvz .I_ qqf, e (4‘.25)
From equation (4.24), we have
1 ’
' — - . ‘4
v=—(F~q4)

E—rr——— ==
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Substituting this value of ¥ in equation (4.25), we get

S 4y 2 :

This is the Hamiltonian in terms of momenta.

- H

Now, the Hamilton’s canonical equations in this case can be written as,

c dH - 1.0
w apf S
However, this can be written as
. OH ﬂ[l (* ,{)24_ ]
"= T dplom WP T 94) tae
T, (p — qA) 4.27
I. L? e T8 i g
=\ =Y (4.27)
Similarly,
p=-VH = —qV¢ + qV(i - A) . (4.28)

Here, p depends only on time and not on space coordinates.

Let us now consider the motion of a charge g in a uniform magnetic field B along z-

axis. Then the vector potential is give by B =V X .ﬂ, has the magnitude B = ﬂﬂ% - %
The components of vector potential in this case is
A, =A,=0 and A,=xB
The Hamiltonian in this case is
Since H does not depend on y and z, we have
p, = const. and p, = const.
Now, putting w = % and x, = z—ﬁ in equation (4.29), we get
H 2*21?1(;05 +p}) +%mm2(x—xﬂ)2 .. (4.30)
Hamilton's equations of motion are
Px = —mw*(x—2%), Py =0, p,=0 ..(4.31)
or py = const. and p, = const.
Here,
Py = —mw*(x — x;) .. (4.32)
This is the equation of motion of simple harmonic oscillator.
¥=—-w’(x—x) -~ (4.33)
The solution of above equation is
x =a cos(wt + a) + x; ..(4.34)

It should be noted that X, is not a fixed point but moves with a velocity py/m
parallel to the y —axis.
To determine y and z , we use

| A 1
A T ~—(py = qxB) = w(x — xo)
Yy =awcos(wt + a) .+[(4.35)

w

——
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,_ Pz

and, Z .. (4.36)
m
The solutions of equations (4.35) & (4.36) are
y = a sin(wt + a) + y, o (B37)
and, z="2¢ 4z, . (4.38)
m

Thus, the particle moves along a spiral of radius a with its axis that is parallel to B.

Phase Space:

In Lagrangian formulation the motion of the system with n degrees of freedom
represented by 3n dimensional space is known as configuration space. The motion of any
point in the configuration space is called system point. As the system point moves, its n
coordinates will change and the system point in the configuration space will describe a
curve which give the trajectory or path of the system.

In the Hamiltonian formulation n coordinates g;and n momenta p; are taken as
independent variables. In only n momenta are used as axes in n -dimensional space, we will
get the momentum space. Any point in the momentum space will describe the state of the
motion of the whole system and the locus of the point is called the hodograpn. A
combination of coordinate and momentum space is described by a function H(q, p). This
2n- dimensional space having n coordinates g; and n momenta p; is known as phase space.
A single point in this phase space will fix all the position coordinates and momenta. Thus,
the point describes the state of motion of the system besides giving its position.

IHlustration:

Let us consider one dimensional simple harmonic oscillator. The total energy of the
oscillator is,

1 1 pt 1

E:Emi2+§kx2:ﬂ+§mmzxz ...(4.39)

This can be written in the form

pE pE

+
(2E /mw?) 2mE
This is the equation of ellipse in two-dimensional space with p and x- axes as shown
in fig.(4.2)

=1 . (4.40)

—
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The ellipse has semi-axis \/EE/mmz and v2mE and the area of ellipse is 2nE /@ . The
ellipses show various possible paths of the oscillator at different energies in the phase
space. These paths are called the phase diagrams.

Two paths in the phase space can never cross. If they do, it will mean that there are
two possible momenta. For the given amplitude of the oscillator, the energy is constant. The
paths in fig.(4.1) will always be clockwise.

Comments on The Hamiltonian Formulation:

* In the Lagrangian formulation the Lagrangian L is a function of generalised
coordinates g; and generalised velocities ¢;. They are not independent variables, For
a system of n -degree of freedom, motion is considered in an n- dimensional
coordinate space called configuration space. Since the Lagrange’s Eduatmm are
second order differential equations. We required 2n initial values to obtain the
solutions.

e While in Hamiltonian formulation, the generalised momenta p; and the generalised
coordinates ¢; are the independent variables. The system of n- degree of freedom
has Zn independent variables. The motion of the system decided by the 2n-
independent variables is called the phase space. There are 2n Hamilton’s equations
each of being first order differential equation and their solutions will need 2n initial
values.

* The Hamilton’s equations fall in two groups corresponding to generalised momenta
and coordinates having an almost symmetrical relationship.

* The Hamiltonian formulation is particularly useful in making a transition from
classical mechanics to quantum mechanics in which the action is quantized.

Gauge Transformation:

The Lagrangian and Hamiltonian are related by the relation

H(p qi t) =prf;’i — L(q;, ;. ©) - (4.41)
Now, consider an arhitrary function as

f _ f("-?l*Q'Er SERSTRTTRR ¢ Y t)

Its total time derivative is given by

af o of . df
E_ !. a_q:qi -+ at .(442)

Differentiation of equation (4.42) with respect to q; gives
d df of
A AJPER-<. voe (443
6{,}'1- dt fi‘qi ( )
Further differentiation with respect to t gives

:t azj (i{) - jr (ii) F ai-l. (i{) .. (4.44)

h
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- : ; : o df ;
Above equation is Lagrange’s equation satisfied by d—‘; Thus, we can define a new
Lagrangian as

df Saaes saiien Qe
+ f(q1, 92 qn, t)
fdt

. ct :
Thus, the Lagrangian is not unique but it is always uncertain by a term E{- This

I = |

. (4.45)

transformation equation of Lagrangian is known as gauge transformation.

The new canonical momenta are
ol e 20 0 (a6
q; dq; 0q;dt
We now introduce a coordinate transformation from old coordinates g, to a new set
of coordinates Q. (k = 1,2, ........,n) |
qd; = Q;'(ergzr----------Qn:t) i (B4T)
This is known as point transformation.

Hence, the new Lagrangian becomes
df(@k.' f)

L'(Qu Qi t) = Lg;,qj0t) £ —
In order to transform variables g; to Q;, we can take the arbitrary function in above

equation (4.48) as a function of both the new and old coordinates. Thus, F = F(q,;, Q;, t) is a
function of 2n variables besides time, in which only n variables are independent.

.. (4.48)

We can write, by using the transformation equation (4.47), as

F=F(q;,Q0t) = F[q;(Qu Qg v e Qi t), Qe ]
oW == F(Ql.Qgr --------- rQn- t)

Then, transformation equation (4.48) becomes
" : : dF(ijQk-t)
L'(Qe Qrot) = L(q),4;.t) dt
dF

Since o of % identically satisfies Lagrange’s equations. In the theory of the canonical

transformations, we shall use
dF(q,Q.t)

L(g,q,t) =L(Q,0Q,t)+ =

Thus, function F, whose total time derivative satisfies Lagrange’s equations, relates the new
and old Lagrangian and is said to generate the transformation. Hence, F is called the
generating function.

» lllustration:

. (4.49)

. (4.50)

Consider the Lagrangian for a simple harmonic oscillator

1 , =
L= Em(q"" - w*q*®) . (4.51)
Transform it with the generating function
1
F= Eimmzqz ..(4.52)
The transformed Lagrangian from equation (4.49) with the positive sign is
L'=L+ -
7 dt
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;
T e Em(q - w?q*) + 2imw?qq
1 : .
I — Ern(q + (wq)? . (4.53)

Canonical Transformation:

If a coordinate is cyclic in the Lagrangian, it is also cyclic in the Hamiltonian. Then,
the equation with conjugate momentum becomes

j e i) 4.54
Pi = 3q .. (4.54)
P = a; = const. . (4.55)
The Hamilton’s equation for ¢, gives
. dH JH |
G = 5";‘3 E = w; = w;(a;) ...(4.56)
" g = wit + B ... (4.57)

Where [5;, are determined from initial conditions.
When g and p are the position and momentum coordinates, and (i, and P, are the new
position and momentum coordinates such that

Pk == Pk(pl:pzr ------ P, 4y ... ant)
.. (4.58)
Q-‘i = Qk (p‘llpzr e ---:pﬁ;ql, qE ...... qn*t)
We can also write as,
P, = Polpiq:.t
K R(p; a; )} . (4.59)
and , Gk = Qk(ﬂ;‘: q; f)
then, if there exists a Hamiltonian K = K(Q,, P,,t) in the new coordinates such that
P o d ( L (4.60
= — ! = —— i
k 30, and Q, P, )

Equations (4.60) are known as canonical transformations.

This is also called contact transformations. The coordinates Q, and P, are referred to as
the canonical coordinates.

The Hamiltonian function H and K in terms of the two sets of coordinates are given by

H= ) petic = L(g,q,0)
and, ; , ~ i .. (4.61)

K =zkak - 1'(Q,Q.t)

It J

We have
i J . dF,(q,Q,t)
L(q,q,t) = L'(Q,Q,t) + 1 -
dF dF dF

# L(a545t) = L' (Qu Qi ) +Z( S 5o 0) + 5 - (462)

where we have used F, to denote !(q“Q“r) which is a function of 2n independent
variables.

Differentiating equation (4.62) with respect to g,, and (J,,,, we get

al, aF,
— = +
04 m qm

= +p.. . (4.63)
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where p,,is the old generalised momentum, and
alL daF
— = ———=4P, . (4.64)
aQ?n dQJ‘Tl
where P, is the generalised momentum for the new Lagrangian L'.

Similarly, the transformed Hamiltonian is

K= Z P,Q; — L

6!* JF dF
K = ZPQI—L+Z(—1{;1 1Q)+—"" ... (4.65)
aQ
Hence, canonical equatlnn (4.60) becumes,
. dK . dK
b G - — ..(4.66
Now, using equations (4.63) & (4 64) in equation (4.65), we get
K = ( ) L+ Z + Z ok
. Z QI o pi‘h aQ; ﬁt
dF;
- K -Z.Ur.fﬁ — L +__
dF;
: K =H4— e (4.67)

dt
Thus, we get a set of relations for the generating function F, = F;(q;, Q;,t) to canonical

transformation as

dF,
I — .. (4.68
dF
=~ .. (4.69)
0Q
dF;
and K=H +_ﬂ_ e (4.70)

Using generating function F;(g;, Q;,t) , we can find the coordinates p; and P;. Above
equations (4.68) & (4.69) gives the relation between q; to p; and Q; to P;. Equation (4.70)
gives the relation between the new and the old Hamiltonian.

Here we have chosen F, = F,(g;,Q;,t), i.e. F is a function of 2n old and new

coordinates. We can choose any one of the functions of new and old coordinates and
momenta as

F,(q.Q,t),F,(q,P,t), F3(p,Q,t), F4y(p, P, t)
The exact form of the generating function depends upon the nature of the problem.
For example, for a transformation P, = P, (p,t), p and P are dependent variables and we
must exclude Fj.

Consider a generating function F; (g, Q) for the harmonic oscillator is given by

1 :
. & Emmq‘: cot () . (4.71)
F, ,
Then, p = a = mwq cotQ .. (4.72)

e e e e e e e e e T e e e e e e

- — [ .
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aF, 1

and, P = ~30 === mwq?cosec? +(4.73)
From equation (4.73), we have
2P
q= ; w— sin @ . (4.74)
With this substitution, equation (4.72) becomes
p=vVZmPw cos( ..(4.75)

Since F, does not involve t explicitly, the Hamiltonian is unaffected by the
transformation. In order to express H in terms of () and P, we proceed as follows:
The Hamiltonian H for the oscillator is

2 2
P maw
H=— 5  el(4T
2m 2 1 (4.76)
Substituting the values of p and g in above equation, we get
H = wP cos*Q + wP sin*Q = wP {4 TT)

Equation (4.77) shows that the Hamiltonian is cyclic in (). Hence, the conjugate momentum
P must be constant. Now,

H E
P=—=—
W W
Where E is the total energy. Further,
o B dH 1
C=gp=¢

Hence, (0 = wt + «, where « is a constant of integration. Thus, the transformation has
changed the problem of the oscillator in such a way that the new P is a constant of motion
and the new () gives translational motion of the oscillator and the transformation is
equivalent to changing the oscillatory motion into a translational one.
Since,

2P

g = |—— sin
! ma ¢

==}
2P

= |— si t 4 ...(4.78
q \mm sin(w a) ( )

This is the solution for a harmonic oscillator.

If generating function F, is chosen, then the transformation from (g, Q) to (g, P) has to
carried out. Since, we have equation (4.69)

ary =
Q. "
The generating function F, can be written as
F2(q,P,t) = Fi(q,Q,t) +ZP;{Q;,, .. (4.79)

Equation (4.79) can be solved for F;. Substituting this value of F; in equation (4.50), wherein
we write L and L' in terms of H and K, we get
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ZPE‘-’?E —H =ZP£Q{' - +%{FE(ELPJ) ”ZH‘QE}

* d
CK=H= Y BQi= ) pidi+Fa(a.P,0) . (4.80)

nglfq.P.ﬂ

Expressing the total time derivative in terms of the derivatives of its argument, we

al, oF, .  aF,
K=H- Z??fh Zl”f.?e'*'z-—‘ﬁ}'; ETF_‘{{'I'W

. K=H+ % = Z (p, aqt) qi — Z (Qi ~- %) P, .. (4.81)

As we are making g and P independent variables, the coefficients of ¢; and P, must be
identically zero. Thus, we get

obtain

@Fz
p; = @Ch .. (4.82a)
Qi = %% .. (4.82b)
and K=H+ % .. (4.82¢)
By following the same procedure as in the previous two cases, we get for [3 and 4
qdi = —E ...(4.83a)
dp;
P, = _9r .. (4.83b)
0
and K=H-+ % .. (4.83¢)
dF,
and g; = _5_13'; ..(4.84a)
Qi = .. (4.84b)
op;
and K=H+ a??— .. (4.84c¢)

Condition for Transformation to be Canonical:
It can be shown that a transformation

P; = Pi(qu, ks t), Ok = Qi (qk: Pis t)
is canonical only if the expression

Zm dq; —Z PidQ; .. (4.85)

For example, consider the generating function which transforms variables gq;, p; to
variables Q;, P; when time is held fixed:

is an exact differential.

B dF;
pf T aqi
and

%
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p=——1L
aQ,
Now, since I, = F,(q;, Q;), we can write
dF, =Y 214 Z: i P
l 5’% T dQy U
; dF; = Z D dgy — Z P, dQ, . (4.86)
R P

But, d [ is an exact differential. Hence, the expression

Zpk dqy “Z Py d @y
k k

must also be an exact differential. This result can be obtained by using any generating
function. The condition of an exact differential can also be written as:

The transformation (p;, q;) to (P, Q;) is canonical if }, q; dp; — 3. Q; dP; is an exact
differential.

It should also be remembered that for canonical transformations not involving t,
then

H(pi, qic) = K(Py, Qi) - (4:87)

lllustrations of Canonical Transformations:

1. Consider a generating function of the type

F, = Z q, P, ... (4.88)
Then, from equation (4.82), we have
@Fz _p
Pi = 5'1?,-,; k
dF,
Qx = 5—!}&‘ = (k
and , H=K

Thus, the old and new coordinates are the same. Hence, the function Fo= ¥ Quity
generates identity transformation.
2. A more general function of the above type is

Fo = ) ful81,02 s G P . (489)
K
Then, new coordinates @, are given by
=25 0 B 4.90

Equation (4.90) show that new coordinates @, are the functions of old coordinate g,. A
transtormation of this type is called a point transformation. The functions f, appearing in
equation (4.89) are completely arbitrary and hence all the point transformations are
canonical.

3. We show that transformation

1, 44, |
P =E(p +g*) and Q = tan 11’_3 is canonical

m
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The transformation is canonical if (p dg — PdQ) is an exact differential. In the present case

1 pdq—qdp
.- — By 2
pdg—PdQ=pdq—5(P"+4 )57

1 1
=pdq—§(pdq~qdp) =§(pfit?+qdp)

: |
~ pdg—PdQ = d (E pq) ..(4.91)

Thus, p dg — P dQ is an exact differential and hence the transformation is canonical.
4. We now show that ¥, g, Q. generates the exchange transformation in which

position coordinates and the momenta can be interchanged.

The given generating function is of the type

Fi = Z Gk
k

Hence, from equation (4.68) & (4.69),

dF,
- = L (492
P 34, k ( )
F
and, P, = —*h = —Qx .+ (4.93)
dQ

Thus, the coordinates and the momenta are interchanged by the transformation.

5 In the case of canonical transformations given by equation (4.58), we can obtain the
following relations:

o M gy Sl
Qk apj aPR ap_j
To prove relation (i), we use equations (4.83a) and (4.83b) as
dF; dF,
qu_ﬁ and Pk=—5§;¢-
Hence,
dq;  0%F;
0Qc  9QxIp,
q P, d°F,
aan ap;  0p;0Qs
aq; 3 gfi
Hence 30, ~ ap, .. (4.94)

Relation (ii) can be proved in a similar manner using equations (4.84a) and (4.84b).
Two more relations of this type can also be proved. These are

op; daP dp; 0

£ Yk . (4.95)
dQk dq; dP,  0q;

Poisson Brackets:

We now consider the useful representation of Poisson brackets in which the
equations of motion can be written in a symmetric form. The Poisson brackets are found to
be a very useful tool in quantum mechanics and field theory.

The Poisson brackets are defined by the equation
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o _Z(r’iu dv du r?v) 235
“Par = £.\og, pi ~ pic 04 = )

l E-'E‘ L ‘ r P é i i ] ; : ]

k
It is obvious from the definition of the Poisson brackets that
lu, v] = =[v, u] ... (4.98)

i.e., the Poisson brackets are anti-commutative.
Similarly, the Poisson bracket of a function with itself is identically zero. Thus,
lu,u] =0, [v,v]=0 ..(4.99)
Moreover, €] =0 = [1,¢] .. (4.100)
Where ¢ is independent of g or p.
The Poisson bracket obeys the distributive law of algebra.
lu+v,w] = [u,w] + [v,w] .. (4.101)
Similarly lu, vw] = [u, vlw + v[u, w] .. (4.102)
The above properties can be proved by using the definition and the elementary
properties of differentiation and are left to the reader as an exercise.
Another important property of the Poisson brackets is
[q,r'*pk] = Ojk
Where 0 is the Kronecker delta.

To prove this property, we write the expansion

Ju dv  Jdu dv
WO YL T
~ \0q; 0p;  Op, 9q,

dq;dp, dq;dp
s [‘f?japk]ZZ( j 0Pk j R)
z

dq, dp, dp, dq,

dq; dpy dq; dpy : ,
But, aq, = Oji, 5_1-3‘-: = 0) and ap, =U= E‘IJ and Z 010kt = Ojk
Hence, we are left with
19, P] = S .. (4.103)
It can also be proved that
du du
[u,q;] = —— and [u,pj] = 44— . (4.104)

Let us consider a very important identity called Jacobi’s identity satisfied by Poisson
brackets. The identity is

lu, [v.w]] + [v, [w, u]] + [w, [u,v]] =0 .. (4.105)
The definition of the Poisson bracket can be written as
i 9] i(ﬁu dv du E;h.?)
il 9| = - — %
&= \0qx Opy OPy 0qy,
2n ;
e Z B (4.106
= Dv = a; 3 e (4. )

[=1

Where D, is an operator defined by
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J
u = Z“iga . (4.107)

and &; represents a set of g; and p; variables. Similarly
Zn

D B ;
v — ‘lﬂfj
The first two terms of the identity ( equation 4.105) are
[u, [v, w]] + [v, [w,u]] = [w [v,w]] - v, [u, w]]
= Du(Duw) o DH(DWW)
= (D,D, — D,D,)w

- Z RE%(EJ 2_?;) N !Z: ﬁ;'{%_(fﬁ%)

tJ
0%w . dtw
[ o wl] + [o )] = ) @y g - Z “iB) 3¢ 35

L)
+Z(H'ﬂffa§j ﬁ’r@s{;f’f; =R
L)

The first two terms on the RHS of equation (4.108) cancel each other since the order of

differentiation is unimportant. Further, by using the property that the sum is not affected if
the indices are interchanged ( that is why they are sometimes called the dummy indices), we
can write the above expression as

0B, da;\ dw
o]+ nol) = 3 (o 55 .55 3

ow ow
bl B-—) (4109
Z(‘q‘ dp; '’ 0q ( )

{
Where we have now used variables g; and p;, and the coefficients of partial derivatives of w

il

are expressed through constants A; and B;. Let us determine the constants by taking
w = p;. We have

[w[v.pl] - [v [wp)]] =4

P dv [ au]
¢ u’@_fiﬁ U'afh

T Aj

Or

I
———
=
Dl
:‘?lﬂ
h—
+
o
)
S| 8
o
Le—]

» Ay = =—[u,v] ..(4.110)

Where we have used equation (4.104). Similarly, when we take w = g;, we get, by using
equation (4.104),

B; = [u. [U:G;']] - [”= [“’qf']:l

ﬁ
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0
Il
|
r—
=
L=
ol
hi—
_|,_
r——
=
1|':1.'I
~

Bj = ——|uy, u] . (4.111)

Substituting coefficients A; and B; in equation (4.109), we get

ow 0 dw 0
[, [, wl] + v [w,u]] = Z (r?f;j dq, e w] = 5]: op; - v])

l

—{w, [, v]]
This is the Jacobi’s identity.

We now prove that the Poisson brackets are also invariant under canonical
transformations. Let 'and (G be any two arbitrary functions. Then,

(7. 6) _Z daF G 9F 0G | 1)

ol —\dq; dp;  dp; 9q, T
Suppose that, g;, p; are functions of new coordinates @, P, then equation (4.112)
becomes

[OF [ 0G 0 adG dP darF [ dG d dG dP
|F, G]q.p = Z ( Ui e i R) ([ 00k + R)]

= 0q;\0Q, dp; 0P, dp; - dp;j \0Qk 0q; 0P, dq;
(G dG
2 [F.G =Z. F U Rp ] (4113
[ ]q,p 4 kan [ Qk]q.p e dﬁf [ qu.p ( ]

When we consider a special case of ' = (,,, we get by changing ¢ to F from equation
(4.113)

dF aF :
QuFlap = ), 557(00 Q)] + ) 57 1@e 7] - (4114)
J J
daF .
Qi Flgp = Zﬁﬁjk .. (4.115)
T
Where we have used equation (4.103). We can write
[F, Q] = i 4,116
Q= -3p - (4.116)
Similarly, we can prove that
[F, P;] = i (4.117)
T 00, o
Hence, the expression for [F, G|, ., becomes
F.G]. . = Z ( aF aG  aG rB‘F) (F.G) (4.118)
e = £\50, 97, " ageop,) T e o0

Equation (4.118) shows that the Poisson bracket is also invariant under canonical
transformation in the phase space. Hence, there is no need of writing the subscripts
(g,p) or (Q, P) on the Poisson brackets.
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