
US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

Unconditional & Conditional JUMP instructions:

Conditional JUMP instructions:

 JA/JNBE—Jump if above / Jump if not Below or Equal
These two mnemonics represent the same instruction. The term above and
below are used when referring to the magnitude of unsigned numbers. The
Number 0111 is above number 0010. If, after a compare or some other
instruction which affects flags, the zero flag and the carry flag are both 0, this
instruction will cause execution to jump to a label given in the instruction.

Example:
CMP AX, 4371H: compare by subtracting 4371H from AX.
JA RUN_PRESS: Jump to label RUN_PRESS if AX above 4371H.

 JAE/JNB/JNC—Jump if Above or Equal / Jump if not Below / Jump if no

Carry
These three mnemonics represent the same instruction. The term above and
below are used when referring to the magnitude of unsigned numbers. The
Number 0111 is above number 0010. If, after a compare or some other
instruction which affect flags, the carry flag is 0, this instruction will cause
execution to jump to a label given in the instruction. If CF is 1, the instruction will
have no effect on program execution.

Example:
CMP AX, 4371H: Compare (AX-4371H)
JAE RUN_PRESS: Jump to label RUN_PRESS if AX above or Equal to 4371H

 JB/JC/JNAE—jump if below/Jump if carry/jump if not above or equal
These three mnemonics represent the same instruction. The term above and
below are used when referring to the magnitude of unsigned numbers. The
Number 0111 is above number 0010. If, after a compare or some other
instruction which affect flags, the carry flag is a 1, this instruction will cause
execution to jump to label given in the instruction. If CF is 0, the instruction will
have no effect on program execution.

Example:
CMP AX, 4371H: Compare (AX-4371H)
JB RUN_PRESS: jump to label RUN_PRESS if AX below 4371H

 JCXZ—Jump if the CX register is Zero

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

This instruction will cause a jump to a label given in the instruction if the CX
register contains all 0’s. If CX does not contains all 0’s, execution will simply
proceed to the next instruction.

Example:
JCXZ SKIP_LOOP: If CX=0, skip the process.

 JE/JZ—Jump if Equal/Jump if Zero
These two mnemonics represent the same instruction. If the Zero flag is set,
then this instruction will cause execution to jump to a label given in the
instruction. If the Zero flag is not 1, the execution will simply go on to the next
instruction after JE or JZ.

Example:
NXT: CMP BX,DX : compare (BX-DX).
JE DONE: Jump to DONE if BX=DX.

 JG/JNLE—Jump if greater/Jump if not less than or equal
These two mnemonics represent the same instruction. The terms greater and
less are used to refer to the relationship of two signed numbers. Greater means
more positive. The number 000000111 is greater than the number 11101010,
because in signed notation the second number is negative. The instruction
usually used after a compare instruction. The instruction will cause a jump to a
label given in the instruction if the zero flag is 0 and the carry flag is the same as
the overflow flag.

Example:
CMP BL, 39H: Compare by subtracting 39H from BL.
JG NEXT_1: Jump to label if BL more positive than 39H

 JGE/JNL—Jump if greater than or Equal/Jump if not less then

These two mnemonics represent the same instruction. The terms greater and
less are used to refer to the relationship of two signed numbers. Greater means
more positive. The number 000000111 is greater than the number 11101010,
because in signed notation the second number is negative. The instruction
usually used after a compare instruction. The instruction will cause a jump to a
label given in the instruction if the sign flag is equal to overflow flag.

Example:

CMP BL, 39H: Compare by subtracting 39H from BL.
JGE NEXT_1: Jump to label if BL more positive than 39H or equal to 39H.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

 Unconditional JUMP instructions :

 JMP—Unconditional Jump to Specified Destination
This instruction will always cause 8086 to fetch its next instruction from the
location specified in the instruction rather than from the next location after the
JMP instruction. If the destination is in the same code segment as JMP
instruction, then only the instruction pointer will be changed to get to the
destination location. This is referred to as a near jump. If the destination for the
Jump instruction is in the segment with a name different from that of the
segment containing the JMP instruction, then both the instruction pointer and the
code segment register contents will be changed to get to the destination
location.

Examples:
JMP Continue:
Fetch next instruction from address at label CONTINUE. If the Label is in the
same segment, an offset coded as a part of the instruction will be added to the
instruction pointer to produce the new fetch address.

JMP BX:
Replace the Contain of IP with the contain of BX. BX must first be loaded with
the offset of the destination instruction in the CS.

 JNE/JNZ—Jump if not equal/Jump if not Zero
These two mnemonics represent the same instruction. If the zero flag is 0, then
this instruction will cause execution to jump to a label given in the instruction. If
the zero flag is 1, then execution will simply go on to the next instruction after
JNE or JNZ.

Example:
NXT: IN AL, 0F8H: Read data value from port.
CMP AL, 72: Compare (AL-72).
JNE NXT: Jump to next if AL! = 72

 JNO—Jump if no Overflow
The Overflow flag will be set if the result of some signed arithmetic operation is
too large to fit in the destination register or memory location. The JNO
instruction will cause the 8086 to jump to a destination given in the instruction if
the overflow flag is not set.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

Example:
ADD AL, BL : add signed bytes in AL and BL.
JNO DONE: Process done if no overflow.

 JNP/JPO—Jump if no parity/Jump if Parity odd
If the number of 1st left in the lower 8 bit of a data word after an instruction
which affects the parity flag is odd, then the parity flag will be 0. The destination
address must be in range of -128 to+127 bytes from the address of the
instruction after the JNP/JPO instruction.

Example:
IN AL, 0F8H: Read ASCII character from UART
OR AL, AL: set flags
JPO ERROR1: Even parity excepted, send error message if parity found odd

 JNS—JUMP if not Signed(Jump is Positive)
This instruction will cause execution to jump to a specified destination if the sign
flag is 0. Since a 0 in the sign flag indicates a positive signed number, you can
think of this instruction as saying “jump if positive”. If the sign flag is set,
indicating negative signed result, execution will simply go on to the next
instruction after JNS.

Example:
DEC AL: decrement counter.
JNS REDO: jump to label REDO if counter has not decremented to FFH.

 JO—Jump if Overflow
The JO instruction will cause the 8086 to jump to a destination given in the
instruction if the overflow flag is set. The Overflow flag will be set if the
magnitude of the result produced by the some signed arithmetic operation is too
large to fit in the destination register or memory location.

Example:

ADD AL, BL: add signed bytes in AL and BL.
JO ERROR: jump to a label ERROR if overflow from add.

 JP/JPE—Jump if parity/jump if parity Even

If the number of 1st left in the lower 8 bit of a data word after an instruction
which affects the parity flag is even, then the parity flag will be set. If the Parity
flag is set, the JP/JPE instruction will cause execution to jump to specified
destination address.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

Example:

IN AL, F8H: Read ASCII character from UART
OR AL, AL: set flags
JPE ERROR2: Odd parity expected, send error message if parity found even

 JS—Jump if Signed(Jump is Negative)
This instruction will cause execution to jump to a specified destination if the sign
flag is set. Since a 1 in the sign flag indicates a Negative signed number, you
can think of this instruction as saying “jump if negative” or “Jump if minus”. If the
sign flag is 0, indicating a positive signed result, execution will simply go on to
the next instruction after JS.

Example:
ADD BL, DH: Add signed byte in DH to Signed byte in BL.
JS TOO_COLD: Jump to label TOO_COLD if result of addition is Negative
Number.

Unconditional & Conditional LOOP instructions

 LOOP—Jump to specified Label if CX != 0 after Auto decrement—Loop

Label
This instruction is used to repeat a series of instructions some number of times.
The number of times the instruction sequence is to be repeated is loaded in to
CX. Each time the loop instruction executes, CX is automatically decremented
by 1. If the CX is not 0, execution will jump to destination specified by a label in
the instruction. If CX=0 after the auto decrement, execution will simply go on to
the next instruction after LOOP. The Destination address for the jump must be in
the range of -128 to +127 bytes from the address of the instruction after the
LOOP instruction. LOOP affects no flags.

Example:
MOV BX, OFFSET PRICE: Point BX at first element in array.
MOV CX, 40: Load CX with number of element in array.
NEXT: MOVE AL, [BX]: get element from array.
ADD AL, 07H: Add Correction Factor.
DAA: Decimal Adjust Result.
MOV [BX], AL: Put result back in array.
INC BX:
LOOP NEXT: Repeat until all elements Adjusted.

 LOOPE/LOOPZ—Loop while CX != 0 and ZF=1

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

LOOPE/ and LOOPZ are two Mnemonics for the same instruction. This
instruction is used to repeat a group of instruction some number of times or until
the zero flag becomes 0. The number of time the instruction sequence is to be
repeated is loaded in to CX. Each time the LOOP instruction executes, CX is
automatically decremented by 1. If CX != 0 and ZF = 1, the execution will jump
to a destination specified by a label in the instruction. IF CX = 0 after the auto
decrement or if ZF = 0, execution will simply go on to the next instruction after
LOOPE/LOOPZ.

Example:
MOV BX, OFFSET ARRAY: Point BX to just before the start of array
DEC BX:
MOV CX, [BX] : Put number of array element in to CX
NEXT: INC BX : Point to the next element in the array
CMP[BX], OFFH : Compare Array element with FFH.

 LOOPNE/LOOPNZ—Loop while CX !=0 and ZF=0

LOOPNE/ and LOOPNZ are two Mnemonics for the same instruction. This
instruction is used to repeat a group of instruction some number of times or until
the zero flag becomes 1. The number of time the instruction sequence is to be
repeated is loaded in to Count Register CX. Each time the LOOPNE and
LOOPNZ instruction execute, CX is automatically decremented by 1. IF CX != 0
and ZF = 0, the execution will jump to a destination specified by a label in the
instruction. IF CX = 0 after the auto decrement or if ZF = 1, execution will simply
go on to the next instruction after LOOPNE/LOOPNZ.

Example:

MOV BX, OFFSET ARRAY: Point BX to just before the start of array
DEC BX:
MOV CX, [BX]: Put number of array element in to CX
NEXT: INC BX: Point to the next element in the array
CMP[BX], ODH : Compare Array element with 0DH.
LOOPNE NEXT

String Instructions

 REP / REPE / REPZ / REPNE / REPNZ –
(Prefix) Repeat String Instruction until Specified Conditions Exist

REP is a Prefix which is written before one of the string instructions. It will cause
the CX register to be decremented and the string instruction to be repeated until
CX=0. The instruction REP MOVSB , for example, will continue the copy string
bytes until the number of bytes loaded into CX has been copied.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

REP and REPZ are two mnemonics for the same Prefix. They stand for repeat if
equal and Repeat if zero, respectively. REPE or REPZ is often used with the
Compare String Instruction or with the Scan String Instruction. REPE or REPZ
will cause the String Instructions to be repeated as long as the compared bytes
or words are equal (ZF=1) and CX is not yet down to zero. In other Words, There
are two Conditions that will stops the Repetition: CX=0 or String bytes or words
not equal.

Example:
REPE CMPSB: Compare string bytes until end of string or until string bytes not
equal.

 MOVS / MOVB / MOVSW

This Instruction copies a byte or a word from a location in the data segment to a
location in the extra segment. The Offset of the Source byte or word in the data
segment must be in the SI register. The offset of the destination in the extra
segment must be contained in the DI register. For multiple bytes multiple word
moves, the number of elements to be moved is put in the CX register so that it
can function as a counter. After the byte or word is moved, SI and DI are
automatically adjusted to point to the next source and next destination. If the
direction flag is 0, then SI and DI will be incremented by 1 after a byte moved and
incremented by 2 after the word move. If the DF is 1, the SI and DI decremented
by 1 after a byte move and decremented by 2 after a word move. MOVS affect
no flag.

Example:
MOV SI, OFFSET SOURSE_STRING: load offset of source string in DS into SI.
MOV DI, OFFSET DESTINATION_STRING: Load offset of start of destination
 string ES into DI.

 CMPS / CMPSB / CMPSW

A string is the series of the same type of data items in sequential memory
location. The CMPS instruction can be used to compare a byte in one string with
a byte in another string or to compare a word in a one string with a word in
another string. SI is used to store the offset of a byte or word in a source string,
and DI is used to hold the offset of byte or word in the other String. The
comparison is done by subtracting the byte or word pointed to by DI from the
byte or word pointed to by SI.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

The string pointed to by DI must be in the extra segment. The string pointed to by
SI must be in the data segment.

Example:
MOV SI, OFFSET FIRST_STRING: point SI at source string.

MOV DI, OFFSET DESTINATION_STRING: point DI at destination String.
CLD: DF cleared. So SI and DI will auto increment after compare.

MOV CX, 100 : Put number of string element in CX.
REPE CMPSB: Repeat the comparison of string bytes until end of the string or
until compared bytes is not equal.

 SCAS / SCASB / SCASW

SCAS compares a byte in AL or a word in AX with a byte or word pointed to by DI
in ES. Therefore, the string to be scanned must be in extra segment, and DI must
contain the offset of the byte or word to be compared. If the Direction flag is
cleared (0), then DI will be incremented after SCAS. If the direction flag is set (1),
then DI will be decremented after SCAS. For byte Strings, DI will be incremented
or decremented by 1, and for word string, DI will be incremented or decremented
by 2.

Example:
MOV DI, OFFSET TEXT_STRING: scan a text string of 80 character of a
carriage return, 0DH: Put offset of string into DI.
MOV AL, 0DH: Byte to be scanned for into AL.
MOV CX, 80: CX is used to element counter.
CLD: Clear DF so DI auto increments.
REPNE SCAS TEXT_STRING: Compare byte in string with byte in AL.

 LODS / LODSB / LODSW

This Instruction copies a byte from a string location pointed to by SI to AL. or a
word from a string location pointed to by SI to AX. If the direction flag is cleared
(0), SI will automatically be incremented to point to the next element of the string.
For a string of bytes, SI will be incremented by 1. For a string of words, SI will be
incremented by 2. If the Direction flag (DF) is set (1), Si will be automatically
decremented to the point to the next string element. For a byte string, SI will be
decremented by 1, and for a word string, SI will be decremented by 2.

Example:
CLD: Clear Direction flag so SI is auto incremented.
MOV SI, OFFSET SOURCE_STRING: Point SI at start of String.
LODS SOURCE_STRING: Copy byte or word from string AL or AX.

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

 STOS / STOSB / STOSW

The STOS instruction copies a byte from AL or a word from AX to a memory
location in the extra segment pointed to by DI. In effect, it replaces a string
element with a byte from AL or a word from AX. After the copy, DI is automatically
incremented or decremented to point to the next string element in memory. If the
Direction flag (DF) is cleared, then DI will automatically be incremented by 1 for a
byte string or incremented by 2 for a word string. If the direction flag is set, DI will
automatically be decremented by 1 for a byte string or decremented by 2 for a
word string.

Processor Control Instruction

 STC
STC- set the carry flag to a 1
STC does not affect any other flags.

 CLC
CLC-Clear the Carry Flag (CF)
This instruction resets the carry flag to 0. No other flags are affected.

 CMC
CMC-Complement the Carry Flag
If the Carry flag (CF) is a before this instruction, it will be set to a 1 after the
instruction. If the carry flag is 1 before this instruction, it will be reset to a 0 after
the instruction executes. CMC affects no other Flags.

 STD
STD-set the direction flag to a 1
STD is used to set the direction flag to a 1 so that SI and/or DI will automatically
be decremented to the point to the next string element when one of the string
instructions executes. If the direction flag is set, SI and/or DI will be
decremented by 1 for byte strings, and 2 for word strings.

 CLD
CLD-Clear Direction Flag
This Instruction resets the direction flag to 0. No other flags are affected. If the
direction flag is reset, SI and DI will automatically be incremented when one of
the string instructions, such as MOVS, CMPS, or SCAS, executes.

 STI
STI-set interrupt flag (IF)

US06CCSC04: Introduction to Microprocessors and
Assembly Language

UNIT – 3: Assembly Language Instructions – II

Setting the interrupt flag to 1 enables the INTR interrupt input for 8086. The
instruction will not take effect until after the next instruction after STI. When the
INTR input is enabled, an interrupt signal on this input will then cause the 8086
to interrupt program execution, push the return address and flags on stack, and
execute an interrupt service procedure.

 CLI
CLI-Clear interrupt Flag
This instruction resets the interrupt flag to 0. No other flags are affected. If the
interrupt flag is reset, the 8086will not respond to an interrupt signal on its INTR
input.

 NOP
NOP-Perform NO Operation
This instruction simply uses up three clock cycles and increments the instruction
pointer to point to the next instruction. NOP Affect NO Flag. The NOP instruction
can be used to increase the delay of delay loop. When hand coding, a NOP can
also be used to hold a place in a program for an instruction that will be added
later.

