Seat No.:

SARDAR PATEL UNIVERSITY

No. of pages:

B.Sc. (I-Semester) EXAMINATION 2021

Saturday, 30th January

02:00pm-04:00pm

US01CMTH 21-Mathematics

CALCULUS

Total Marks: 70

Note: Figures to the right indicates full marks of question.

Q: 1 Answer the following by selecting the correct answer from the given options:

[10]

1. If $x = cos\left(\frac{1}{m}logy\right)$ then y(0) = ---

a.
$$e^{\frac{m\pi}{2}}$$

2. The nth derivative of e^{mx} is -----

 $m^m e^{mx}$

3. Vertices of $\frac{x^2}{4} + \frac{y^2}{9} = 1$ are -----

a.
$$(\pm 3, 0)$$

 $b.(\pm 2.0)$

c. $(0, \pm 3)$

- 4. $r = \cos 2\theta$ has ----- loops.

- c.4

d.2

- 5. Reciprocal equation of $r = \frac{1}{1 + \cos \theta}$ is
- b. Rose Curve
- c. Cardioid

d. Lemniscate

- 6. $y = x^3 3x^2 + 2x = 0$ is symmetry about-----
- a. X-axis
- b. Y-axis
- c. Origine

d. None of these

7. If $J_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$ then $J_n = ---$

a.
$$\frac{n+1}{n}J_{n-2}$$

b.
$$\frac{n-1}{n}J_{n-2}$$
 c. $\frac{n}{n-1}J_{n-2}$

c.
$$\frac{n}{n-1}J_{n-2}$$

d. none

8. Volume by cylindrical shell method is V=----

a.
$$2\pi \int_a^b xy dx$$
 b. $\pi \int_a^b xy dx$ c. $\pi \int_a^b x^2 dx$ d. None

b.
$$\pi \int_a^b xy dx$$

c.
$$\pi \int_a^b x^2 dx$$

9. For the curve y=f(x) the radius of curvature at a given point is given by------

a.
$$\frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$$

b.
$$\frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$$

b.
$$\frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$$
 c. $\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ d. none

- 10. Degree of homogeneity of $u = 3x^2yz + 5xy^2z + 4z^4$ is ----
 - a. 2
- b. 3
- c.4

d.0

Q: 2 Do as directed:

[08]

- (1) True or False: $\lim_{x \to \frac{\pi}{2}} \left(x \frac{\pi}{2} \right) tanx$ is $\frac{0}{0}$ form.
- (2) True or False: $coshx + sinhx = e^x$
- (3) The Cartesian form of a polar equation $r = sec\theta tan\theta$ is -----
- (4) The polar equation of conic, if directrix pass thro' the point $(5,0^0)$ and e=1 is -----
- (5) Surface area for revolution about X-axis is S=-----
- (6) The value of $\int_0^{\frac{\pi}{2}} \sin^{10}x dx = ---$
- (7) True or False: If $u = x^3 3xy^2$ then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- (8) True or False: The curvature of a straight line is zero.

Q: 3 Answer in brief of the following questions. (Any Ten)

[20]

- 1. Evaluate: $\lim_{x\to 2} \frac{\sin(x^2-4)}{x-2}$
- 2. If $y = e^{3x} \log(7x 5)$ the find y_3 .
- 3. Find centre-to focus distance, foci and center of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 4. Express the point (3, 40°) in three other ways such that $-2\pi \le \theta \le 2\pi$.
- 5. Discuss asymptotes of Cartesian curve.
- 6. Find the parametric equation of $\sqrt{x} + \sqrt{y} = \sqrt{a}$
- 7. Evaluate: $\int sin^4 x cos^3 x dx$
- 8. Find the value of θ at the point of intersection of $r = a(1 \cos\theta)$ and $r = a\cos\theta$.
- 9. Find the area of the surface by revolving the circle $x^2 + y^2 = 1$, y > 0 about X-axis.
- 10. Find radius of curvature at any point on the curve $s = 8asin^2(\frac{\psi}{6})$
- 11. Find $\frac{dy}{dx}$ when $x^y = y^x$.
- 12. Verify Euler's theorem for the function $u = \frac{xy}{x+y}$

Q: 4 Attempt any Four of the following:

- (1) State and Prove Leibniz's theorem.
- (2) Evaluate: $\lim_{x\to 0} \frac{e^{x} + \log(1-x) 1}{\tan x x}$
- (3) Sketch: $y = \frac{x(x-4)}{(x-1)(x+2)}$

- (5) Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} sin^n x dx$, $n \in N$
- (6) Find the entire length of asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. Moreover, prove that the length of asteroid measure from (0, a) to the point (x, y) is given by $\frac{3}{2}(ax^2)^{\frac{1}{3}}$.
- (7) State and Prove Euler's theorem for z=f(x,y).
- (8) Show that the radius of curvature at any point of the curve $x = ae^{\theta}(\cos\theta \sin\theta)$, $y = ae^{\theta}(\cos\theta + \sin\theta)$ is twice the perpendicular distance of the tangent at the point from the origin.

[32]