

No. of Printed Pages:03

Sardar Patel University, Vallabh Vidyanagar

B.Sc. - Semester-III : Examinations : 2021-22

Subject: Mathematics

US03CMTH21 Numerical Methods

Max. Marks: 70

10

Date: 29/11/2021, Monday

Timing: 03.00 pm - 05.00 pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1.	Answer	the	following	by	choosing	correct	answers	from	given	choices.
-------	--------	-----	-----------	----	----------	---------	---------	------	-------	----------

- [1] Aitkin's Δ^2 -process is used for finding approximate
 - [A]derivative of a function
 - integral of a function
 - [C]root of an equation
 - D none of these

[A] $|\phi(x)| > 1$

[B] $|\phi(x)| < 1$

 $|C| |\phi'(x)| > 1$

LIBRAR

[3] Which of the following intervals contains a root of $x^2 - 3x - 4 = 0$? [A][1,3][D] [7,9]

[4] If $y_5 = 4$, and $y_{15} = 10$ then $E^5 y_{10} =$

[C] 15

[D] 20

[5] $E^{\frac{1}{2}}y_n - E^{-\frac{1}{2}}y_n =$ [A] Δy_n

[B] δy_n

[C] ∇y_n

[D] μy_n

[6] Which of the following is true?

 $[A] \Delta y_5 = \nabla y_4$

 $[B] \Delta y_5 = \nabla y_5 \qquad [C] \Delta y_4 = \nabla y_5$

[7] For the given data [D] 40

[8] In usual notations, we always have $[x_0, x_1] - [x_1, x_0]$. [A] <

[D] none

[9] In usual notations, the formula

$$\int_{a}^{b} f(x).dx = \frac{h}{2}[y_0 + 2(y_1 + y_2 + \dots + y_{n-1}) + y_n]$$

is known as

[A] Simpson's $\frac{1}{3}$ rule

[B] Simpson's $\frac{3}{8}$ rule

[C] Trapezoidal rule

[D] none

(P.T.O)

Page: 1

- [10] For using Simpson's $\frac{3}{8}$ rule it is required that the number of sub-intervals be
- [D] a multiple of 8
- In the following, depending on the type of question either fill in the blank or answer Q: 2. whether a statement is true-false.

- [1] Equation $x^3 + 11x + 20 = 0$ has no roots in the interval [1, 2]. (True of False?)
- [2] Equation $x^3 + 5x 2 = 0$ has a root in the interval [0, 1]. (True of False?)
- [3] If $E^7y_2 = 10$ then $E^4y_5 + 1 = \dots$
- [4] If $y_{10} = 7$ then $E^2 y_8 + E^8 y_2 = \dots$

- [6] To use Lagrange's Interpolation formula for a data set $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ it is necessary that x_0, x_1, \ldots, x_n are equally spaced.
- [7] For approximating integral using Simpson's rule it is necessary to take even number of subintervals. (True or False?)
- [8] To use trapezoidal rule the number of subintervals must be even. (True or False?)
- Answer any TEN of the following. Q: 3.

20

- [1] Express $\sin x = 5(x+2)$ in the form of $x = \phi(x)$, so that the necessary condition for applying the Iteration method is satisfied.
- [2] Find first approximation of a root of $x^3 + 8x 7 = 0$ using bisection method.
- [3] Find an interval containing an initial approximation of $5\sin x + 3 = 0$.
- [4] If $E^{10}y_1 = 20$ then find $E^5y_6 + E^6y_5$.
- [5] Prove that $(1 + \Delta)(1 \nabla) = 1$.
- [6] Prove that $\nabla = 1 E^{-1}$.
- [7] If $y_1 = 4$, $y_3 = 12$, $y_4 = 19$ and $y_x = 7$ find x. Write the formula you use and also give it's name.
- [8] Using Langrage's interpolation formula, find y(x) for the data

x	4	5	7
V	10	-5	2

32

- [10] Given that $\frac{dy}{dx} = x^3 + y$, y(0) = 1, determine y(0.02) using Euler's method, taking h = 0.01
- [11] Using Simpson's $\frac{1}{3}$ rule find $\int_{1}^{7} x dx$, with subintervals of length 1 unit.
- [12] Using Trapezoidal rule find $\int_{0}^{3} \cos x dx$, with 3 subintervals of equal lengths.
- Q: 4. Attempt ANY FOUR of the following questions.
 - [1] Using Bisection method find a real root of the equation $x^3 x 4 = 0$ correct upto three decimal places.
 - [2] Find a real root of $x^3 + x^2 + 2x 1 = 0$ by method of False Position correct upto three decimal places.
 - [3] Using Gauss's forward interpolation formula find f(32), given that $f(25)=0.2707,\ f(30)=0.3027,\ f(35)=0.3386,\ f(40)=0.3794$
 - [4] Derive Gauss's Forward interpolation formula for equally spaced values of argument,
 - [5] Given the set of tabulated points (x,y) which are (1,-3), (3,9), (4,30) and (6,132) obtain the value of y when x=2 using Newton's divided difference formula.
 - [6] Obtain 1^{st} and 2^{nd} order numerical differentiation formula from Newton's forward difference formula.
 - [7] Evaluate $\int_{1}^{3} \frac{1}{x} dx$, by using Simpson's $\frac{1}{3}$ rule with 4 strips.
 - [8] Use Picard's method to approximate y when x=0.25, given that y(0)=0 and $\frac{dy}{dx}=\frac{x^2}{y^2+1}$ correct upto three decimal places.

