

No. of Printed Pages: 03

Sardar Patel University

B.Sc. Sem:III , Nomember: 2021

US03CMTH22 [MultivariateCalculus] **Subject: Mathematics**

Max.Marks: 70

Date:30/11/2021

Time:03.00P.M. TO 05.00 P.M.

Q.1 Choose the correct option for each of the following.

[10]

(a) 1 (b) 2 (c) 3 (d) None of these

(2) If \emptyset (x, y, z) = xyz, the value of $|grad\emptyset|$ at the point (1,2,-1) is

(a) 1 (b) (3) The value of $\int_0^{\pi} \frac{dx}{x^2+4}$ is

(a)

0 (b) 1

(c)

(4) $\int_0^1 \int_0^2 dx \, dy = \dots$

(a) 0 (b) 1

(c) 2 (d) none

(5) $\frac{ds}{dt} =$

(a) $\left| \frac{d\bar{r}}{dt} \right|$ (b) $\left| \frac{d\bar{r}}{dt} \right|$ (c) $\left| \frac{d\bar{r}}{ds} \right|$ (d) $\left| \frac{dr}{dt} \right|$

(6) If $x = r\cos\theta$, $y = r\sin\theta$ then Jacobian J =

(b) r (c) r^2 (d) 2

(7) If $f = -xy^2$, $g = x^2y$ then $\frac{\partial f}{\partial v} - \frac{\partial g}{\partial x} = \dots$

(a) 4xy (b) -4xy (c) 2xy (d) -2xy

(8) $\int_C [f dx + g dy + h dz]$ is independent of path iff fdx+gdy+hdz is

(b) not exact (c) 1 (d)

(9) $\int_0^1 \int_0^1 \int_0^1 x dx dy dz = \dots$

(a)

1

(b)

(c)

2

(d)

(10) A function f(x, y, z) is said to be harmonic if $\nabla^2 f = ...$

(a)

0

(b)

-1 (c) 1

Q.2 Do as Directed:

[8]

(1) True or False : $\beta(m,n) = \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$.

(2) True or False : The vector $3x^2\bar{\iota} - 4y\bar{\jmath} + z\bar{k}$ is irraotational.

(3) If we change Car tesian variable (x,y) to polar variable (r,θ) then dxdy =

(4) True or False: The moment of inertia about origin defined as $I_0 = I_X + I_Y$.

(5) The area of plane region in cartesian form is given by A =

(6) If $W = 2x^2 + y^2$ then $\nabla^2 W = \dots$

(7) In Stock's theorem $\iint_{\mathcal{S}} (\overline{\nabla} \times \overline{V})$. \overline{n} dA =

(8) If f is harmonic function then $\iint_{S} \frac{\partial f}{\partial n} dA = \dots$

Q.3 Attempt any Ten.

(1) Define: A Beta function.

(2) Prove that $\Gamma^{\frac{1}{2}} = \sqrt{\pi}$.

(3) Define: Directional derivatives.

(4) Evaluate the line integral $\int_C (3x^2 + 3y^2) ds$, where C: over the path y = x from (0,0) to (1,1) (Counterclockwise direction).

(5) Define: Line integral.

(6) Find area of the region bounded by parabola $y^2 = 4 - x$ and $y^2 = 4 - 4x$.

(7) Prove that the form under integral sign in

$$\int_{(1,1,2)}^{(3,-2,-1)} [yzdx + xzdy + xydz]$$
 is exact and hence evaluate it.

(8) Find tangent plane to the surface $x^2 + y^2 = z$ at (2,1,5).

(9) Represent the surface $x^2 + y^2 + z^2 = a^2$ in parametric form.

(10) Define: Harmonic function.

(11) Evaluate: $\iint_S [yzdydz + zxdzdx + xydxdy]$, where $S: x^2 + y^2 + z^2 = 1$.

(12) If $\overline{V} = \overline{\nabla} f$ then prove that $\int_{C} \overline{V}_t ds = 0$.

[20]

[32]

Q.4 Attempt any FOUR.

- (1) State and Prove relation between Beta and Gamma function.
- (2) Let $f(r) = \frac{e^{\lambda r}}{r}$, be a scalar point function then prove that $(\nabla^2 \lambda^2) f = 0$, where $r = \sqrt{x^2 + y^2 + z^2}$.
- (3) Evaluate $\iint_{\mathbb{R}} (x^2 + y^2) dxdy$, where R is the parallelogram with vertices

R:(0,0),(1,1),(2,0),(1,-1),& x + y = u, x - y = v.

- (4) Find the volume of the region bounded by the cylinder $x^2 + y^2 = 1$ and $y^2 + z^2 = 1$.
- (5) State and Prove Green's theorem for plane.
- (6) Verify both vector form (divergence and curl form) of Green's theorem for the given $\bar{V} = 7x\bar{\imath} 3y\bar{\jmath}$ and C: the circle $x^2 + y^2 = 4$.
- (7) State and Prove Divergence theorem of Gauss.
- (8) Verify the Stock's theorem for the $\bar{V}=(2x-y)\bar{\iota}-yz^2\bar{\jmath}-zy^2\bar{k}$ and surface S: The upper half surface of the sphere $x^2+y^2+z^2=1$.