

No of printed page: 2

[130]

SARDAR PATEL UNIVERSITY B.Sc. (SEMESTER - IV) EXAMINATION - 2022 Saturday, 9th April 2022 MATHEMATICS: US04CMTH21 (Ordinary Differential Equations)

(Ordinary Differential Equations)	
Time: 03:00 p.m. to 05:00 p.m.	Maximum Marks: 70
Que.1 Fill in the blanks.	[10]
(1) Order and degree of $y - xy_1 = [1 + y_1^2]^{5/2}$ are respective (a) 1 and 5 (b) 1 and 2 (c) 1 and 10 (d) 1 and 5/2	rely.
(2) The integrating factor of the differential equation $(1+x^2)y_1+y=\tan(a)$ (a) $e^{\tan x}$ (b) $e^{\tan^{-1}x}$ (c) $e^{-\tan x}$ (d) $\tan x$	$an^{-1} x$ is
$(3) \frac{1}{D-i} x = \dots$	
(a) $e^{-x} \int xe^x dx$ (b) $e^x \int xe^x dx$ (c) $e^{ix} \int xe^{-ix} dx$ (d)	$e^{-ix} \int x e^{ix} dx$
$(4) \frac{1}{f(D)} e^{2x} \cos 3x = \dots$	(ii) Dahai Uak step forcule
(a) $e^{2x} \frac{1}{f(D+2)} \cos 3x$ (b) $e^{2x} \frac{1}{f(D-2)} \cos 3x$ (c) $e^{2x} \frac{1}{f(D+3)} \cos 3x$	$3x (d)e^{2x}\frac{1}{f(D-3)}\cos 3x$
(5) $\frac{1}{(D^2+9)}\cos 3x = \dots$	S.P. Science
(a) $\frac{x}{6} \sin 3x$ (b) $\frac{-x}{6} \sin 3x$ (c) $\frac{x}{6} \cos 3x$ (d) $\frac{-x}{6} \cos 3x$	x (2)
(6) If $L^{-1}{f(s)} = f(t)$, then $L^{-1}{\overline{f}(s-a)} = \dots$ (a) $e^{at}f'(t)$ (b) $e^{at}f(t)$ (c) $f(t)$ (d) None	x Q.R. P. Science College & LIBRARY Go **
(7) Inverse of Laplace transforms of $\frac{e^{-2s}}{s-3}$ is	V.Naget
(a) $e^{(t-2)} u(t-2)$ (b) $e^{3(t-2)} u(t-2)$ (c) $-e^{3(t-2)} u(t-2)$	(d) $2e^{3(t-2)} u(t-2)$
(8) Differential equation of $ay^2 = x^3$ is	$3x^2$
(9) For continuous compounding $A = \dots$ (a) e^{rt} (b) Pe^{rt} (c) $-Pe^{rt}$ (d) Pe^{-rt}	
(10) Orthogonal trajectories of $y^2 = 4a(x+a)$ is	
Que.2 Write TRUE or FALSE.	[8]
(1) Solution of $p - y = 0$ is $y = c \log x$	radio pa Beneral et mitol/ (T) el dotte urgos e til tipol

(2) The general solution of the differential equation $y = px + \frac{3}{p}$ is $cy = c^2x + 3$

(3) The particular integral of $(D-m)^r y = e^{mx}$ is $\frac{x^r}{r!} e^{mx}$

(4) The complementary function of $(D^3 - D)y = e^x + e^{-x}$ is $c_1 + c_2e^x + c_3xe^{-x}$

(5) $L^{-1} \left[\frac{1}{s^2 - a^2} \right] = \frac{1}{a} \sinh at$

(6) If f'(t) is continuous and $L\{f(t)\}=f(s)$ then $L\{f'(t)\}=s\overline{f}(s)-f(0)$

- (7) Orthogonal trajectories for family of circles having centre at origin are ellipses.
- (8) Ohm's law is $E = iR^2$

Que.3 Attempt the following (Any TEN)

- (1) Solve $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0$.
- (2) Solve $y^2(y px) = x^4p^2$.
- (3) Solve $(x^2 2xy y^2)dx (x+y)^2dy = 0$.
- (4) Let y_1 and y_2 be two solutions of a linear differential equation $\frac{d^ny}{dx^n} + a_1\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_ny = 0$ and C_1, C_2 be two arbitrary constants. Then prove that $C_1y_1 + C_2y_2$ is also a solution.
- (5) Find P.I.(particular integral) of $(2D^2 4D + 5)y = e^{3x}$
- (6) Find C.F.(complementary function) of $(D^3 3D^2 + 2D)y = \cos 2x$.
- (7) Find Laplace transform of $4t^2 + \sin 3t + e^{2t}$
- (8) State Linearity Property and First shifting Property.
- (9) Define Unit step function.
- (10) State Newton's law of cooling .
- (11) If Rs. 10000 is invested at 6 percent per annum, find what amount has accumulated after 6 years if interest is compounded (a) annually (b) quarterly.
- (12) State Kirchhoff's second law.

Que.4 Attempt the following (Any FOUR)

[32]

- (1) Prove that the necessary and sufficient condition for the differential equation $\mathbf{M}dx + \mathbf{N}dy = 0$ to be exact is that $\frac{\partial \mathbf{M}}{\partial y} = \frac{\partial \mathbf{N}}{\partial x}$.
- (2) Solve $p^2 py + x = 0$.
- (3) Obtain the particular integral of $f(D)y = \sin mx$, where m is constant.
- (4) Solve $(D^2 5D + 6)y = 4e^x$ subject to the conditions that y(0) = y'(0) = 1. Hence find y(16).
- (5) Using Laplace transform , solve the simultaneous equations $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$, when x = 0, y = 2 for t = 0 .
- (6) Evaluate (i) $L\left\{e^{-4t}\int\limits_0^t t\sin 3t\ dt\right\}$ (ii) $\int\limits_0^\infty \frac{e^{-t}\sin^2 t}{t}\ dt$
- (7) Water is heated to the boiling point temperature 100^{0} C .It is then removed from the heat and kept in a room which is at a constant temperature of 60^{0} C .After 3 minutes , the temperature of the water is 90^{0} C .(a) Find the temperature of water after 6 minutes .(b) When will the temperature of water be 75^{0} C and 61^{0} C?
- (8) Find the family orthogonal to the family $y=ce^{-x}$ of exponential curves. Determine the member of each family passing through (0,4).

LIBRAR