B.Sc.(SEMESTER-VI) EXAMINATION-2021 July 15, 2021, Thursday 10:00 a.m. to 12:00 p.m. US06CMTH21(Complex Analysis)

Maximum Marks: 70

	Ividalitati Ividalita i
Q.1	Choose the correct option in the following multiple choice questions. [10]
(1)	Domain of $f(z) = \frac{1}{z^2 - 1}$ is (A) $\mathbb{C} - \{i\}$ (B) $\mathbb{C} - \{-i\}$ (C) $\mathbb{C} - \{\pm i\}$ (D) $\mathbb{C} - \{\pm 1\}$
1 2	Cartesian form of $f(z) = z^2$ is (A) $x^2 + y^2 + 2ixy$ (B) $x^2 + y^2 - 2ixy$ (C) $x^2 - y^2 - i2xy$ (D) $x^2 - y^2 + i2xy$
(3)	$f(z) = z ^2$ is differentiable only at (A) $z = 1$ (B) $z \neq 1$ (C) $z \neq 0$ (D) $z = 0$
	If f differentiable at z_0 then C-R equation satisfied at
(5)	Singular points of $f(z) = \frac{z^3+i}{z^2-3z+2}$ are $z =$ (A) 1,2 (B) 1, i (C) 0,1 (D) 1,3,i
(6)	$i\sin iy = \dots$
· · · · · ·	(A) $-\sinh y$ (B) $i\sinh y$ (C) $-i\sinh y$ (D) $\cos iy$
(7)	$f(z) = e^{-z}, \ u_x + iv_x = \dots$ (A) e^z (B) e^{-z} (C) $-e^{-z}$ (D) 0
(8)	$\lim_{z \to z} expz = \dots$
	(A) ∞ (B) 1 (C) 0 (D) -1
(9)	Image of $y > 0$ under the transformation $w = i/z$ is
(10)	If $T(z) = \frac{az+b}{cz+d}$, $(ad-bc \neq 0)$. Then $\lim_{z \to -d/c} T(z) = \dots, if \ c \neq 0$.
	(A) ∞ (B) i (C) 2 (D) 0
Q.2	2 Do as directed.
(1)	Domain of $f(z) = \frac{1}{z^2 + 1}$ is
	True or False?
(0)	f(z) = z is differentiable only at $z = 0$.
(3)	True or False?

- If $u(x,y) = 2x x^3 + 3xy^2$ then $u_{xx} + u_{yy} = 1$. (4) Singular point of $f(z) = \frac{2z}{z(z^2 + 1)}$ are $z = \dots$
- (5) $exp(2 \pm 3\pi i) = \dots$
- (6) True or False? $\lim_{z \to \infty} exp(-z) = 0.$
- (7) Fixed point of $w = \frac{6z 9}{z}$ are
- (8) True or False? The image of line $x=c_1$, $c_1\neq 0$ under the transformation w=1/z is square.

Q.3 Answer the following in short. (Attempt any 10)

(1) By using definition, prove that $\frac{d}{dz}(c) = 0$, where c is complex constant

(2) Define: Continuous complex function.

(3) Express $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$ in the terms of z, where z = x + iy

(4) Define: Analytic function & Entire function.

(5) Verify f(z) = (3x + y) + i(3y - x) is entire or not?

(6) Prove that $u = e^x \sin y$ is harmonic function.

(7) Solve: $e^{2z-1} = 1$.

- (8) Prove that $\sin z = \sin x \cosh y + i \cos x \sinh y$.
- (9) Prove that $\sinh z = \sinh x \cos y + i \cosh x \sin y$.

(10) Define: Linear fractional transformation.

(11) Prove that w = z + B, where B is complex constant, gives a translation by means of vectors representing B.

(12) Find the image of line $x \ge c_1$, $c_1 > 0$ under the transformation w = 1/z is the circle. Also show the region graphically.

Q.4 Answer the following questions. (Attempt any 4)

[32]

[20]

(1) Let f(z) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0$ and $w_0 = u_0 + v_0$ then prove that $\lim_{z \to z} f(z) = w_0$ if and only if $\lim_{(x,y)\to(x_0,y_0)}u\left(x,y\right)=u_0$ & $\lim_{(x,y)\to(x_0,y_0)}v\left(x,y\right)=v_0$

(2) Give an example of function such that its real and imaginary component have continuous partial derivative of all order at a point but the function is not differentiable at that point.

Verify it.

(3) Let f(z) = u(x,y) + iv(x,y) and f'(z) exist at $z_0 = x_0 + iy_0$. Prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they satisfies the Cauchy-Reimann equations $u_x = v_y \& u_y = -v_x$ at (x_0, y_0) . Also prove that $f'(z) = u_x + iv_x$ where u_x and v_x are evaluated at (x_0, y_0) .

(4) State and prove sufficient conditions for differentiability of f(z).

(5) Prove that (i) $cosh^{-1}z = log[z + \sqrt{z^2 - 1}]$ (ii) $tanh^{-1}z = \frac{1}{2}log\left[\frac{1+z}{1-z}\right]$.

(6) Prove that $e^w = z$ iff w has one of the values $w = ln + i(\Theta + 2n\pi)$; $n \in \mathbb{Z}$. Also find the value of log1 & Log1.

(7) Find linear fractional transformation that maps the points: $z_1 = 2$, $z_2 = i$, $z_3 = -2$ onto $w_1 = 1$, $w_2 = i$, $w_3 = -1$.

(8) Prove that the transformation $w = \sin z$ is a one-one mapping of the semi infinite strip $y \ge 0$, $-\pi/2 \le c_1 \le \pi/2$ in the z-plane onto the upper half $v \ge 0$ of the w-plane.

