SEAT No.

[47]

SARDAR PATEL UNIVERSITY

B.Sc. SEM-VI EXAMINATION

 17^{th} July 2021 , Saturday 10:00 am to 12:00 noon

Sub: Mathematics (US06CMTH23) (Linear Algebra)

Maximum Marks: 70

Q.1 Choose the correct option in the following questions, mention the correct option in the answerbook.	[10]
(a) If $T(x) = (x, y) = (x, y)$	

(1) If $T: V_1 \to V_2$ defined by T(x) = (x, 0) then $T(x+y) = \dots$

(a) (x,y) (b) (x+y,0) (c) (x,0) (d) (y,0)

(2) dim $P_3 =$

(a) 1 (b) 2 (c) 3 (d) 4 (3) If a linear map $T: V_2 \to V_2$ defined by T(x,y) = (x,-y), $B_1 \& B_2$ are

standard basis for V_2 then $(T:B_1,B_2)=\dots$

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$; (c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

(4) Every subset of set is LI.

(a) LD (b) LI (c) zero (d) power

(5) In vector space V, $\{v\}$ is LD iff

(a)
$$v = 0$$
 (b) $v \neq 0$ (c) $v = \{0\}$ (d) $v = 1$

(6) dim $V_3 =$

(a) 1 (b) 2 (c) 3 (d) 0

(7) In any vector space V , 0 $\bar{u} = \dots$

(a) 0 (b) u_ (c) 0 (d) 1

(8) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B_1 = B_2 = \{e_1, e_2, e_3\}$, then the linear map T such that

 $A = (T : B_1, B_2)$ is given by $T(x, y, z) = \dots$

(a) (x, 0, 0) (b) (0, y, 0) (c) (0, 0, z) (d) (x, y, z)

(9) $T: V_3 \to V_4$ then the matrix $(T: B_1, B_2)$ is of order

(a) 4×3 (b) 3×3 (c) 3×4 (d) 4×4

(10) If $T: U \to V$ is linear map then $T(0) = \dots$

(a) 0 (b) 1 (c) 1 (d) 0

(1) True or False: In any vector space V , $\alpha \bar{0} = 0$.

(2) True or False: Any set containing zero vector is LD set

- (3) True or False: The columns of a square matrix are LI if its rows are LI.
- (4) True or False: If $T:V_1\to V_3$ defined by T(x)=(x,2x,3x) then T is a
- (5) If $T: P \to P$ defined by T(p) = p' then T(p+q)..... T(p) + T(q).
- (6) Any orthogonal set of non-zero vectors in an inner product space is......
- (7) The zero is a characteristic root of if and only if is
- (8) If $T: U \to V$ is linear map then $T(\alpha u_1 + \beta u_2) \dots \alpha T(u_1) + \beta T(u_2)$, for all scalar α, β , for all $u_1, u_2 \in U$
- Q.3 Answer the following in short.[Attempt any ten]:

20

- (1) Define Inner product on vector space V.
- (2) For any vector space V, Prove that (-1)u = -u, for all $u \in V$.
- (3) Is $\{(1,2,1),(-1,1,0),(5,-1,2)\}$ LI of V_3 ? (4) Define: Matrix of linear map T related to the ordered bases B_1 and B_2 .
- (5) Define an Isomorphism of Linear Transformation.
- (6) Is a set $\{p \in P \mid \text{degree of p} = 4\}$ Subspace of a vector space P?
- (7) Define: Basis for a Vector space.
- (8) Define: Linear map associated with the matrix relative to the ordered bases
- (9) Is a set $\{(x_1, x_2, x_3) \in V_3/x_1^2 + x_2^2 + x_3^2 \le 1\}$ Subspace of a vector space V_3 ?
- (10) Is $\{(1,0,0),(2,0,0),(0,0,1)\}$ LI of V_3 ?
- (11) Let $T: U \to V$ be a linear map, then prove that $T(0_U) = 0_V$.
- (12) Is a map $T: V_3 \to V_2$ defined by $T(x_1, x_2, x_3) = (|x_1|, 0)$ Linear? Justify.

Q.4 Attempt any Four.

[32]

- (a) Show that $V_3 = \{(x_1, x_2, x_3) \mid x_1, x_2, x_3 \in \mathbb{R}\}$ is a real vector space under usual addition and scalar multiplication.
- (b) Show that a linear transformation $T:V\to V'$ is one one mapping iff
- (c) Let V be a vector space V with basis consist of n elements then Prove that any n+1 elements of V are linearly dependent.
- (d) Let $V = P_n(x)$, the set of all polynomials of degree less than or equal to n and let V' = F. Is the mapping defined by $T: V \to V'$, where $T(a_o + a_1x + a_2x + a_3x +$ $a_2x + \cdots + a_nx$) = a_o is a linear transformation or not? Justify your answer in detail.
- (e) Prove that the set $M_n(F)$ of all $n \times n$ over F forms a ring.

(f) Determine the Eigen values and the corresponding Eigen vectors for the matrix

$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

- (g) Let $A=\begin{bmatrix}2&-3&4\\1&0&-1\\-2&1&0\\1&2&-2\end{bmatrix}$. Obtain a linear map associated with the given matrix , where B_1 and B_2 are standard bases of V_3 and V_4 respectively.
- (h) Orthonormalize the set of linearly independent vectors $\{(1,0,1,1),(-1,0,-1,1),(0,-1,1,1)\}$ of V_4 .

