[131] SARDAR PATEL UNIVERSITY

B.Sc. (SEMESTER-VI) EXAMINATION-2022

April 4, 2022 Monday US06CMTH21(Complex Analysis) 3:00 p.m. to 5:00 p.m. Maximum Marks: 70

Q.1	Choose	the	correct	option	in	the	following	multiple	choice	questions.
-----	--------	-----	---------	--------	----	-----	-----------	----------	--------	------------

[10]

- (1) Domain of $f(z) = \frac{1}{z^2+4}$ is
 - (A) $\mathbb{C} \{\pm 2i\}$ (B) $\mathbb{C} \{\pm 2\}$ (C) $\mathbb{C} \{\pm i\}$ (D) $\mathbb{C} \{\pm 1\}$
- (2) In the Cartesian form of $f(z) = z^2 + 1$, $Re\{f(z)\} = \dots$
 - (A) $x^2 + y^2 + 1 2ixy$ (B) $x^2 + y^2 + 1$ (C) $x^2 y^2 + 1$ (D) $x^2 y^2 + i2xy$
- (3) $Im(z+z^{-1}) = \dots$

(A)
$$\left(y - \frac{y}{x^2 + y^2}\right)$$
 (B) $\left(x - \frac{x}{x^2 + y^2}\right)$ (C) $\left(x + \frac{x}{x^2 + y^2}\right)$ (D) $\left(y + \frac{y}{x^2 + y^2}\right)$

- (4) If C R equations are not satisfied at z_0 then f(z) is at z_0 .
 - (A) differentiable (B) not differentiable (C) must continuous (D) none
- (5) For complex function f(z) = v + iu where v = v(x, y), u = u(x, y), the C R equations are
 - $(A) u_x = v_y; u_y = -v_x$

(B) $u_y = v_x$; $u_x = -v_y$

- (C) $u_x = v_y$; $u_y = v_x$
- (D) $u_x = v_x$; $u_y = -v_x$

LIBRARY

- (6) if e^z is real then $Imz = \dots, n \in \mathbb{Z}$.
 - (A) 2π (B) $n\pi$ (C) π (D) n
- $(7) i\sin iy = \dots$
 - (A) $-\sinh y$ (B) $i \sinh y$ (C) $-i \sinh y$ (D) $\cos iy$
- (8) $Im (Log(3-4i)) = \dots$
 - (A) $\ln(25)$ (B) $\ln(5)$ (C) π (D) $-\pi/4$

- (A) $(0, 1/2c_1)$ (B) $(c_1, 0)$ (C) $(1/c_1, 0)$ (D) $(1/2c_1, 0)$
- (10) Image of x > 0 under the transformation w = i/z is
 - (A) u < 0
- (B) u > 0
- (C) v < 0
- (D) v > 0

Q.2 Do as directed.

[08]

- (1) The polar form of $z = 1 \sqrt{3}i$ is $= \dots$
- (2) $f(z) = z^2 + 2z 1$ is differentiable only at $z \in \mathbb{C}$ (True or False).
- (3) $u(x,y) = x^2 y^2$ is harmonic function (True or False).
- (4) Singular point of $f(z) = \frac{2z}{z(z^2 1)}$ are $z = \dots$
- (5) If $e^z = 2 i2\sqrt{3}$ then $Re(z) = \dots$

- (6) $\log(i^3) = 3\log(i)$ (True or False).
- (7) Fixed point of $w = \frac{6z 9}{z}$ are 3 (True or False).
- (8) Image of y < 0 under the transformation w = (1+i)z is v < u (True or False).

Q.3 Answer the following in short. (Attempt any 10)

[20]

- (1) By using definition, prove that $\frac{d}{dz}(z) = 1$.
- (2) Explain Continuous complex function with example.
- (3) Express $f(z) = x^2 y^2 2y + i(2x 2xy)$ in the terms of z, where z = x + iy.
- (4) Define: Singular point & Harmonic function.
- (5) Verify $f(z) = z^3$ is entire or not.
- (6) Prove that $u = e^x \cos y$ is harmonic function.
- (7) Evaluate: $log(-1+\sqrt{3}i)$ and $Log(-1+\sqrt{3}i)$.
- (8) Prove that cosz = cosxcoshy isinxsinhy.
- (9) Prove that $|\cos z|^2 = \cos^2 x + \sinh^2 y$.
- (10) Define: Linear transformation.
- (11) Prove that w = z + B, where B is complex constant, gives a translation by means of vectors representing B.
- (12) Prove that the general linear transformation w = Az + B, $A \neq 0$, A and B are complex constant, gives expansion or contraction and a rotation followed by a translation.

Q.4 Answer the following questions. (Attempt any 4)

[32

- (1) If $f(z) = \frac{x^3y(y-ix)}{z(x^6+y^2)}$, $z \neq 0$, f(0) = 0 (i) Is $\lim_{z\to 0} f(z)$ exists? (ii) Is f(z) continuous at 0? (iii) Is f(z) differentiable at 0?
- (2) Prove that $f(z) = |z|^2$ is differentiable only at z=0. Also prove that f'(0) = 0.
- (3) Prove that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y) for u(x, y). Also find corresponding analytic function f(z), where $u(x, y) = x^2 y^2$.
- (4) State and prove sufficient conditions for differentiability of f(z).
- (5) Prove that (i) $sin^{-1}z = -ilog[iz + \sqrt{1-z^2}]$ (ii) $Log(-1+i) = \frac{1}{2}ln2 + 3\frac{\pi}{4}i$.
- (6) Prove that $e^w = z$ iff w has one of the values $w = lnr + i(\Theta + 2n\pi)$; $n \in \mathbb{Z}$. Also find the value of $\log(-1)$ & Log1.
- (7) Find linear fractional transformation that maps the points: $z_1 = 2$, $z_2 = i$, $z_3 = -2$ on to $w_1 = 1$, $w_2 = i$, $w_3 = -1$.
- (8) Prove that the set of all bilinear map forms a non-commutative group with respect to composition of mapping.

