V.P.& R.P.T.P.Science College. Vallabh Vidyanagar.

Internal Test

B.Sc. Semester I

US01CMTH01 (Analytic Geometry)

7/10/2013, Monday

11.00 a.m. to 12.00 p.m.

Maximum Marks: 30

Que.1 Fill in the blanks.

(1) The curve of $y = \frac{2}{(x+1)(x-2)}$ has branches. (a) 1 (b) 2 (c) 3 (d) 4

(2) Extent of $x = 2\cos^2\theta$, $y = 3\sin\theta$ is

- (a) $0 \le x \le 2$, $-3 \le y \le 3$ (b) $-2 \le x \le 2$, $-3 \le y \le 3$ (c) $-1 \le x \le 1$, $-3 \le y \le 3$ (d) $-1 \le x \le 1$, $-1 \le y \le 1$

(4) Centre of the circle $r = 5\cos\theta$ is

- (a) $(5,0^{\circ})$ (b) $(5/2,0^{\circ})$ (c) $(5/2,\pi)$

(5) Cube root unity are

(a)
$$1, -1$$
 (b) $1, -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ (c) $1, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ (d) $1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

(6) $(cis \theta)^{6/15}$ has only distinct values.

- (a) 15 (b) 6 (c) 6/15 (d) 5

Que.2 Answer the following (Any three)

6

6

- (1) Find tangent parallel to axes for $x = 2t^2$; y = 3t.
- (2) Find the parametric equation for $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
- (3) Write polar equation of horizontal line through the point $(2, -90^0)$
- (4) Find equation of tangent line to the circle with radius 4 at the point $(4,60^{\circ})$.
- (5) If $2\cos\theta = x + \frac{1}{x}$, then prove that $2\cos r\theta = x^r + 1/x^r$. (6) Reduce $1 \cos\alpha + i\sin\alpha$ in modulus-amplitude form.

Que.3 Sketch the curve given by
$$y = \frac{(x-1)(x+2)}{x(x-4)}$$

6

6

OR

Que.3 If a curve is given by x = f(t); y = g(t) and that both x and y get numerically large as t approaches some number, say a. Then an oblique asymptote to the curve, if it exist, is given

by
$$y = mx + c$$
, where $m = \lim_{t \to a} \frac{dy}{dx}$ and $c = \lim_{t \to a} (y - mx)$.

Que.4 In usual notation prove that $r = \frac{p e}{1 \pm e \sin \theta}$

6

- Que.4 Prove that polar equation of circle with centre (r_1, θ_1) and radius a is given by $r^2 + r_1^2 2rr_1cos(\theta \theta_1) = a^2$.

 Also find equation of circle if centre is (i) on polar axis (ii) on normal axis ,at distance a from the pole.
- Que.5 Prove that there are q and only q distinct values of $(\cos \theta + i \sin \theta)^{1/q}$, where q is an integer. Hence find the cube roots of unity and show that they form an equilateral triangle in the Argand diagram.

OR

Que.5 State and prove De-Moivres theorem for complex number

Science Co

6

6