## V.P.& R.P.T.P.Science College, Vallabh Vidyanagar. B.Sc. (Semester - I ) Internal Test US01CMTH21 (CALCULUS)

Date. 5/10/2017; Friday

12.30 p.m. to 2.30 p.m.

......

Maximum Marks: 50

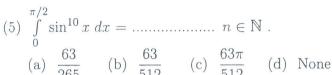
Que.1 Fill in the blanks.

- (1)  $\cosh x \sinh x = \dots$ (a) 1 (b)  $e^x$  (c)  $e^{-x}$  (d) -1

- (d) None

P. Scie

- (3) Parametric equation for  $x^{2/3} y^{2/3} = a^{2/3}$  are .......
  - (a)  $x = a\cos^3\theta$ ;  $y = a\sin^3\theta$  (b)  $x = a\sec^3\theta$ ;  $y = a\tan^3\theta$
  - (c)  $x = \cos^3 \theta$ ;  $y = \sin^3 \theta$  (d)  $x = a \tan^3 \theta$ ;  $y = a \sec^3 \theta$
- (4) The curve of  $r = a\theta$  is is symmetric about .......
  - (a) polar axis (b) normal axis (c) pole (d) polar axis, normal axis and pole



- (6) Volume by Cylindrical cell method is  $V = \dots$ 
  - (a)  $2\pi \int_{a}^{b} xy \, dx$  (b)  $\pi \int_{a}^{b} xy \, dx$  (c)  $\pi \int_{a}^{b} x^2 \, dx$  (d) None
- (7) If  $\overline{r(t)}$  is differentiable vector function of constant length then ......

- (a)  $\overline{r} \times \frac{d\overline{r}}{dt} = \overline{0}$  (b)  $\overline{r} \frac{d\overline{r}}{dt} = 0$  (c)  $\overline{r} \cdot \frac{d\overline{r}}{dt} = \overline{0}$  (d)  $\frac{d\overline{r}}{dt} \cdot \overline{r} = 0$
- (8) ..... has infinite radius of curvature at any point .
  - (a) Circle with radius 4
- (b) Parabola  $y^2 = 4ax$
- (c) Line y = x
- (d) None

Que.2 Answer the following (Any Five)



- (1) Evaluate  $\int \frac{dx}{\sqrt{4x^2-9}}$ (2) For an integer m if  $y=(ax+b)^m$ , then prove that  $y_n=m(m-1)\cdots(m-n+1)a^n(ax+b)^{m-n}$ . (3) Find any one oblique asymptote for the curve given by  $x=t+\frac{1}{t^2}$ ;  $y=t-\frac{1}{t^2}$ .
- (4) Find Tangent parallel to the axes and Extent for  $x = cos^2\theta$ ;  $y = 2sin\theta$ .
- (5) Evaluate  $\int_{0}^{\pi/4} \cos^3 2x \sin^4 4x \, dx.$
- (6) Evaluate  $\int_{0}^{\pi} \frac{\sin^{4} \theta}{(1+\cos \theta)^{2}} d\theta.$
- (7) If  $u = \sin^{-1}(\frac{x^2y^2}{x+y})$ , then prove that  $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3\tan u$ .
- (8) Find  $\frac{dy}{dx}$  for  $x \sin(x y) (x + y) = 0$ .
- Que.3 (a) State and prove Leibniz's theorem. Hence find  $y_n$  for  $y = x \log(x 1)$ .
  - (b) In usual notation prove that  $\frac{d}{dx} \left( \cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 1}}$ ;  $x \ge 1$



3

10

|       |     |                                                                                                                                                                                                                                                                                                                   | -   |
|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Que.3 |     | Evaluate $\lim_{x\to 0} \frac{e^x + \log(1-x) - 1}{\tan x - x}$ .                                                                                                                                                                                                                                                 | ù   |
|       | (d) | Find center-to-focus distance, foci and asymptotes for the hyperbola $\frac{x^2}{4} - \frac{y^2}{5} = 1$ .                                                                                                                                                                                                        | 3   |
| Que.4 | (a) | Sketch the curve given by $y = \frac{(x-1)(x+2)}{x(x-4)}$ .                                                                                                                                                                                                                                                       | 4   |
|       | (b) | In usual notation prove that $r = \frac{p e}{1 \pm e \cos \theta}$ .                                                                                                                                                                                                                                              | 4   |
|       |     | OR                                                                                                                                                                                                                                                                                                                |     |
| Que.4 | (c) | If a curve is given by $x = f(t)$ ; $y = g(t)$ and that both $x$ and $y$ get numerically large as $t$ approaches some number, say $a$ . Then an oblique asymptote to the curve, if it exist, is given                                                                                                             |     |
|       |     | by $y = mx + c$ , where $m = \lim_{t \to a} \frac{dy}{dx}$ and $c = \lim_{t \to a} (y - mx)$ .                                                                                                                                                                                                                    | 4   |
|       | (d) | Sketch the curve given by $r = 2 - \cos \theta$ .                                                                                                                                                                                                                                                                 | 4   |
| Que.5 | (a) | Prove that the length of the curve $x^{2/3}+y^{2/3}=a^{2/3}$ measured from $(0,a)$ to the point $(x,y)$ is given by $\frac{3}{2}(ax^2)^{1/3}$ .                                                                                                                                                                   | E-0 |
|       | (b) | Evaluate $\int_{0}^{1} x^5 \sqrt{\frac{1+x^2}{1-x^2}} dx$ .                                                                                                                                                                                                                                                       | 3   |
|       |     | OR                                                                                                                                                                                                                                                                                                                |     |
| Que.5 | (c) | Obtain Reduction Formula for $\int \sin^n x  dx$ where $n \in \mathbb{N}$ .                                                                                                                                                                                                                                       | 4   |
|       | (d) | The area bounded by the parabola $x^2=8y$ and the line $y=2$ is revolved about the line $y=2$ . Find the volume of the solid thus generated .                                                                                                                                                                     | 4   |
| Que.6 | (a) | Prove that if $\rho$ is the radius of curvature at any point P of the parabola $y^2=4ax$ and S is its focus then prove that $\rho^2 \propto SP^3$ .                                                                                                                                                               | -   |
|       | (b) | For $\bar{r}(t)=3\cos t\ \bar{i}+3\sin t\ \bar{j}+t^2\ \bar{k}$ . Find (i) the velocity vector and acceleration vector (ii) the speed at any time t (iii) the time , if any , when the acceleration is orthogonal to velocity .                                                                                   | Ç   |
|       |     | OR                                                                                                                                                                                                                                                                                                                |     |
| Que.6 | (c) | State and prove Euler's theorem for homogeneous function $z=f(x,y)$ of degree $n$ . If all the second order partial derivatives of $f$ exist and are continuous, then prove that $x^2\frac{\partial^2 z}{\partial x^2} + 2xy\frac{\partial^2 z}{\partial x^2} + y^2\frac{\partial^2 z}{\partial x^2} = n(n-1)z$ . | -   |

(d) If A, B and C are angles of a  $\triangle ABC$  such that  $\sin^2 A + \sin^2 B + \sin^2 C = K$ , a constant, then prove that  $\frac{dB}{dC} = \frac{\tan C - \tan A}{\tan A - \tan B}$ .

3