3

V.P.& R.P.T.P.Science College, Vallabh Vidyanagar.

Internal Test

B.Sc. Semester III

	US03CMTH01 (Advanced	Calculus)
and the second s				

Date. 5/10/2015; Monday 3.00 p.m. to 4.30 p.m. Maximum Marks: 25 Que.1 Fill in the blanks. 3 (2) If $\bar{v} = 7x\bar{i} - 3y\bar{j}$ then $\iint_{R} (\nabla \times \bar{v}) \cdot \bar{k} \, dxdy = \dots$ (a) 1 (b) 2 (c) -1 (d) 0 (3) If $\bar{r} = u \cos v \, \bar{i} + u \sin v \, \bar{j} + u \, \bar{k}$ then $EG - F^2 = \dots$ (a) 2 (b) 0 (c) $2u^2$ (d) uQue.2 Answer the following (Any Two) 4 (1) Evaluate $\iint_R e^{-x^2-y^2} dxdy$; where $R: x^2+y^2=1$. (2) Show that in $\int_{(2,0,0)}^{(-1,2,\pi)} \left[ye^{xy} \cos z dx + xe^{xy} \cos z dy - e^{xy} \sin z dz \right]$, the form under integral sign is exact and hence evaluate it. (3) State and prove first fundamental form of a surface in cartesian form . Que.3 (a) Transform $\iint (x^2 + y^2) dxdy$ in uv-plane by taking x + y = u, x - y = v. Then evaluate it , where R : Parallelogram with vertices (0,0) , (1,1) , (2,0) , (1,-1) . (b) Find area of the region bounded by parabola $y^2=4-x$ and $y^2=4-4x$ 4 2 OR. Que. 3 (a) Find volume of the region bounded by the first octant section cut from the region inside the cylinder $x^2 + z^2 = 1$ and by the plane y = 0, z = 0, x = y. 5 (b) Evaluate $\int_{0}^{\pi/2} \int_{0}^{1} x^2 y^2 dy dx.$ 1 Que.4 (a) State and prove Green's theorem for plane. 4 (b) Evaluate $\int \frac{\partial w}{\partial n} ds$, where $w = 2x^2 + y^2$ and C: the boundary of the region bounded by $y = x^2 \text{ and } y = x + 2.$ 2 OR. Que.4 (a) Change the order of integration in $\int_{0}^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dy dx$. 3 (b) Evaluate $\int [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ by using Green's theorem , where C: the boundary of region bounded by $y = \sqrt{x}$ and $y = x^2$. 3 Que.5 (a) State and prove divergence theorem of Gauss. 5 (b) By using divergence theorem , evaluate $\iint [x^3 dy dz + x^2 y dz dx + x^2 z dx dy]$, where S : closed surface bounded by the plane z=0 , z=b , $x^2+y^2=a^2$. 1 Que.5 (a) Find area of the surface $z^2 = x^2 + y^2$, where $0 \le z \le 1$. 3 (b) Evaluate $\iint f(x,y,z) dA$, where f(x,y,z) = xy and S: z = xy, $0 \le x$, $y \le 1$.