

LIBRARY

Vallabh Vidyanagar-388120

B.Sc. (Semester - 4) Subject: Physics Course: US04CPHY01
Title of the paper: Electrodynamics Theory and Spectroscopy
Date: 13-3-2018, Tuesday
Time: 3 pm to 4.30 pm
Total Marks: 25

Q1	MCQs	[3]
1.	$\nabla^2 V = -\frac{\rho}{\epsilon_0}$ is calledequation. (a)Poisson's (b) Laplace's (c) Gauss's (d) Ampere's	
2.	The continuity equation for steady current is given by (a) $\mathbf{K} = \frac{d \mathbf{I}}{d \ell_\perp}$ (b) $\mathbf{J} = \frac{d \mathbf{I}}{d a_\perp}$ (c) $\nabla \cdot \mathbf{J} = -\frac{d \rho}{d t}$ (d) $\nabla \cdot \mathbf{J} = 0$	
3	The effect of magnetic field on the spectrum is known as eff (a)Zeeman (b) Stark (c) Bragg (d) Coloumb's	ect.
Q2	Short Questions [Attempt ant 12]	[4]
1. 2. 3.	What is electric flux? State Gauss's law. Explain magnetic vector potential. Compare: Normal and Anomalous Zeeman effect.	
Q3	State Coulomb's law and discuss electric field in detail. OR	[6]
Q3	Explain electric potential and give comments on the potential.	[6]
24	Using the Biot-Savart law, prove that the magnetic field a distance	S
	from a long straight wire carrying steady current I is $B = \frac{\mu_0 I}{2\pis}$.	[6]
	OR	
24	Compare: Magnetostatics and Electrostatics,	[6]
25	Describe: Investigation of spectra.	[6]
25	OR Explain in short: Vector Atom Model.	[6]