

Subject: Mathematics

Internal Test: 2018-19 US03CMTH02

Max. Marks: 50

Numerical Analysis

Date: 06/10/2018

Timing: 03.00 pm - 05.00 pm

8

P. Scie

LIBRAR'

- [1] For approximation of a root of an equation, intersection of a chord joining end points of graph of a function in an interval and the X-axis is used in
 - [A] False position method
- [B] Bisection method
- [C] Iteration method
- [D] Aitkin's Δ^2 -Process
- [2] Initial approximation of a root of $x^3 x 2 = 0$ can be chosen from [B] [-1,0][C][1,2][A][0,1]
- [3] Which of the following is true?

[A]
$$\Delta y_5 = \nabla y_4$$
 [B] $\Delta y_5 = \nabla y_5$ [C] $\Delta y_4 = \nabla y_5$ [D] $\Delta y_6 = \nabla y_5$

[B]
$$\Delta y_5 = \nabla y$$

$$[C] \Delta y_A = \nabla y_5$$

[D]
$$\Delta y_6 = \nabla y_5$$

[4] If
$$\Delta y_5 = 5$$
 and $y_6 = 11$ then $y_5 = [A] 16$ [B] -16

$$[C] -6$$

- [5] Langrange's Interpolation formula can be used for a data with ____ arguments. [A] Rational [B] Irrational [C] only equally spaced [D] Unequally spaced
- [6] For the given data $\begin{bmatrix} x & x_0 = 3 & x_1 = 4 & x_2 = 5 & x_3 = 6 & x_4 = 7 & x_5 = 8 \\ y & 5 & 8 & 11 & 15 & 23 & 30 \end{bmatrix}$ $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} 1$ [B] 2 [C] 3

$$[x_1 \ x_2, x_3] =$$

- [7] In usual notations, if I(h) = 5 and $I(\frac{h}{2}) = 8$ then using Romberg's method, $I(h, \frac{h}{2}) =$ [A] 6 [B] 7 [C] 8 [D] 9
- [8] Runge-Kutta method is used for finding a numeric [A] integral [B] derivative [C] solution of a differential equation [D] none

Q: 2. Answer any FIVE of the following

10

- [1] Find an interval containing an initial approximation of $x^3 4x + 1 = 0$
- [2] Express $\sin x = 5(x+2)$ in the form of $x = \phi(x)$, so that the necessary condition for applying the Iteration method is satisfied.
- [3] If $y_{10} = 20$ and $y_9 = 15$ then find $\Delta y_9 \nabla y_{10}$

[4] Prove that
$$\mu = \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right)$$

[-7	тт .	Υ ,	1	c 1	0 1 ()	
[5]	Using	Langrage	interpolation	formula,	find $y(x)$	for the data

0	X	4	5	7
d	у	10	-5	2

6	Construct	divided	difference	table	for	the	data

X	2	3	4	5
У	10	15	18	20

[7] Using Trapezoidal rule find $\int_{0}^{3} e^{x} dx$, with 3 subintervals of equal lengths.

- [8] Using Simpson's $\frac{1}{3}$ rule find $\int_{1}^{7} x dx$, with subintervals of length 1 unit.
- Q: 3 [A] Discuss the Bisection method for approximation of root of an equation.

4

4

[B] Find a real root of $x^3-4x-9=0$ by method of False Position correct upto three decimal places

OR

Q: 3 [A] Discuss the Aitken's Δ^2 -Process for approximation of a real root of an equation.

4

[B] Find a real root of $2x = \cos x + 3$ by iteration method correct upto three decimal places

4

Q: 4 [A] Derive Newton's Forward Difference interpolation formula for equally spaced values of arguments.

4

[B] Use Gauss's forward formula to find y for x = 30 given that

X	21	25	29	33	37
У	18.4708	17.8144	17.1070	16.3432	15.5154

4

OR

Q: 4 [A] Derive Stirling's interpolation formula for equally spaced arguments.

4

[B] Locate and correct error in the following table of values

X	1	2	3	4	5	6	7	8
У	3010	3424	3802	4105	4472	4771	5051	5315

4

Q: 5 [A] Derive Newton's divided difference formula

4

[B] Using Langrange's interpolation formula express the following function as a sum of partial fractions

$$\frac{x^2 + 6x + 1}{(x-1)(x+1)(x-4)(x-6)}$$

4

Q: 5	[A]	Obtain 1^{st} and 2^{nd} order numerical differentiation formula from Newton's forward difference formula	4
	[B]	Tabulate $y = x^3$ for $x = 2, 3, 4, 5$ and calculate $\sqrt[3]{10}$ correct upto three decimal places	4
Q: 6	[A]	Derive the formula of Simpson's $\frac{1}{3}$ -rule for numerical integration.	4
		From the Taylor's series for $y(x)$, find $y(0.1)$ correct upto four decimal places if $y(x)$ satisfies $\frac{dy}{dx} = x - y^2$ and $y(0) = 1$	4
		OR	
Q: 6	[A]	Describe Picard's method of successive approximation	4
	[B]	Given that $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$, determine $y(0.04)$ using Euler's modified method, correct upto four decimal places	4