V.P. & R.P.T.P. Science College, V.V. Nagar

Internal Test: 2013-14

T.Y.B.Sc.: Semester - V (CBCS)

Subject: Mathematics

US05CMTH02

Max. Marks: 30

Real Analysis-II

Date: 01/10/2013

Timing: 3.30 pm - 5.00pm

Instructions: (1) This question paper contains FIVE QUESTIONS

- (2) The figures to the right side indicate full marks of the corresponding question/s
- (3) The symbols used in the paper have their usual meaning, unless specified
- Q: 1. Answer the following by choosing correct answers from given choices.

6

Sci

LIBRAR

- [1] The sequence $\{S_n\}_{n=1}^{\infty}$, where $S_n=(-1)^n\left(1+\frac{1}{n}\right)$
 - [A] is convergent
- [B] oscillates finitely
- [C] oscillates infinitely
- [D] is divergent
- [2] Every convergent sequence is
 - [A] oscillating

[B] bounded

[C] unbounded

[D] none

[A] p < 1

[B] p > 1

[C] $p \leq 1$

[D] $p \geqslant 1$

$$[A] \quad \sum_{n=1}^{\infty} \frac{u_{n+1}}{u_n} = 1$$

$$[B] \quad \sum_{n=1}^{\infty} \frac{u_{n+1}}{u_n} < 1$$

$$[C] \quad \sum_{n=1}^{\infty} \frac{u_{n+1}}{u_n} > 1$$

[5] If $f(x,y) = x^3y^3 - 3x^2y^2$ then $f_y(0,1) =$

[A] 0

[B]

[C] 2

[D] 3

 $\begin{bmatrix} 6 \end{bmatrix} \lim_{(x,y)\to(4,\pi)} x^2 \sin \frac{y}{x} =$

[C] $8\sqrt{2}$

- [D]
- Answer any THREE of the following.

6

- 1] For any number x show that $\lim_{n\to\infty}\frac{x^n}{n!}=0$
- 2] Using the definition of limit show that $\lim_{x\to -2} 3x + 7 = 1$
- 3] If $\sum_{n=1}^{\infty} u_n = u$ and $\sum_{n=1}^{\infty} v_n = v$ then prove that $\sum_{n=1}^{\infty} (u_n + v_n) = u + v$
- 4] Test for convergence of the series whose general term is $\frac{2n+1}{n}$
- 5] If

LIBRAR

- Q: 3. Define Convergent Sequence and show that every convergent sequence is bounded and has a unique limit.
 - 6

OR

Show that the sequence $\{r^n\}$ converges iff $-1 < r \le 1$. Q: 3.

- 6
- Q: 4 [A] Prove that a positive term series is convergent it and only if the sequence of its partial sums is bounded above.
 - 3
 - [B] Investigate the behaviour of the series whose n^{th} term is $\sin \frac{1}{n}$

3

OR

State and prove the D'-Alembert's Ratio test Q: 4.

- 6
- Q: 5. If V is a function of two variables x and y and $x = r \cos \theta$, $y = r \sin \theta$ then prove that

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{1}{r} \frac{\partial V}{\partial r}$$

6

OR.

Show that f(xy, z - 2x) = 0 satisfies, under suitable conditions, the equation $x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 2x$. What are these conditions?