Vitthalbhai Patel & Rajratna P.T.P.SCIENCE COLLEGE

VALLABH VIDYANAGAR

B.Sc. (Semester - 6)

Subject: Physics, Course: US06CPHY01

Title: Quantum Mechanics
First Internal Test

Date: 10/03/2013

Q-4

order of commutator

Time - 3:30 p.m to 5:00 p.m

Monday Total Marks – 30

Q-1	Short Questions (Attempt any Three) (1) State the Heisenberg's uncertainty principle	(06)
	(2) What is the boundary condition for normalized wave function?	
	(3) Define stationary states of the wave function(4) What is the condition of the total probability of the wave function	
	(5) Define adjoint and non adjoint operator(6) Define Dirac delta function and write its condition	
Q-2	Derive the one dimensional Schrodinger equation for a free particle OR	(80)
Q-2	Discuss Ehrenfest's theorem in detail	(08)
Q-3	Discuss the motion of a particle in a square well for bound state and find the admissible solutions OR	(08)
Q-3	Derive the expression of energy eigen values for a particle in a square well using the admissible solutions	(08)
Q-4	method	(80)
	OR	

Explain the uncertainty in the quantum mechanical observables (08)

and prove that the product of uncertainty in observables is of the