Total Printed pages 02 + 01 pages of spectroscopy data sheet = 03 Pages

V. P. & R. P. T. P. Science College

Vallabh Vidyanagar

B. Sc. Internal Examination – October 2019 (Vth Semester) Subject: Organic Chemistry:: Course Code: US05CCHE01

Date: 01/10/2019 Time: 11:00 AM to 12:15 PM

Total Marks: 25 Day: Monday

Que. 1 Choose the correct option for the following. 05 1. Which of the following compound have the properties of secondary aliphatic amine? (c) Pyrrolidine (a) Pyridine (b) Furan (d) Thiophene The 'N' atom in pyridine is 2. (a) Sp³ hybridised (b) Sp² hybridised (c) sp hybridised (d) cannot be predicted How many CMR signals would you expect from m-xylene? 3. (a) 5 (b) 7 (c) 6Which of the following is the example of isolated diene? 4. (a) 1,3-butadiene (b) 1,3-pentadiene (c) 1,2-butadiene (d) 1,4-pentadiene. Which of the following compound is the bicyclic halogenated hydrocarbon derivative? 5. (a) Heptachlor (b) Linalool (c) Baygon (d) Heliotropin.

Que. 2 Answer the following

05

P. Scie

LIBRAR

- Explain: electrophilic substitution reactions in five membered heterocycles a. exclusively occur on position-2 not at position-3.
- Discuss the Chichibabin reaction. b.

OR

Que. 2 Answer the following

05

- Explain: Neucleophilic substitution reaction occurs chiefly at position-2 & 4 in a. pyridine.
- b. Write synthesis of 2-acetylfuran from pentosan.

Que. 3 Answer the following

05

- Why TMS is use as a standard for reference point in NMR spectroscopy? a.
- Deduce the structure using following data and give appropriate justification. b.

[P. T. O.]

Molecular formula: C₄H₆O CMR (\delta, ppm): (a) 3.4, Quartet (b) 50.8, Triplet (c) 77.9, Singlet (d) 81 .6, Singlet. NMR (δ, ppm): (a) 2.0, 3H, Singlet (b) 1.8, 1H, Singlet (c) 4.1, 2H, Singlet. OR Que. 3 Answer the following 05 Deduce the structure using following data and give appropriate justification. Molecular formula: C9H13N IR(cm⁻¹): 3400, 3000, 2900, 1600, 1500, 1450, 1375, 1140, 1030, 690, 7304 NMR (δ, ppm): (a) 7.3, 5H, Singlet (b) 3.7, 2H, Singlet (c) 2.5, 2H, Ouartet (d) 1.25, 1 H, Singlet (e) 1.1, 3H, Triplet. Differentiate between Diastereotopic proton and Enantiotopic proton. Que. 4 Answer the following 05 What is coordination polymerization? Explain the importance of Ziegler-Natta catalyst in coordination polymerization and discuss its advantages over free-radical polymerization in the preparation of polyethylene. OR Oue. 4 Answer the following 05 Give detail discussion for the addition of HBr to 1, 3-butadiene at -80 °C and at 40°C temperature with potential energy diagram. Explain: cis-1, 4-polyisoprene is an elastomeric while trans-1, 4-polyisoprene is non-elastic. Que. 5 Answer the following 05 Give the synthesis and applications of following. P. Sci (i) Insecticide of organophosphorus class. LIBRAR (ii) Compound which used to impart hay like odour. OR

Que. 5 Answer the following

a.

b.

a.

a.

b.

a.

05

- Give the synthesis and applications of following. a.
 - (i) Compound containing heterocyclic triazole moiety which is used as whitening agent.
 - (ii) Compound which occurs in the essential oils of bergamot.

Don't stress Do your best; Good Luck for Exam...

TABLE FOR

COURSE NO. US05CICH01 (ORGANIC CHEMISTRY-II). FOR QUESTION NO.

	Characteristic Infrared Absorption	n Frequencies. IR
Bond	Compound type	Frequency range cm ⁻¹
C-H	Alkanes.	2850-2960, 1350-1470.
C-H	Alkenes.	3020-3080 (m), 675-1000.
C-H	Aromatic rings.	3000-3100 (m), 675-870.
C-H	Alkynes.	3300
C=C	Alkenes.	1640-1680 (1)
$C\equiv C$	Alkynes.	2100-2260 (v)
C=C	Aromatic rings.	1500. 1600 (v)
C-O	Alcohols, Ethers. Carboxylic acids, Esters.	1080-1300
C=O	Aldehyde, Ketones, Carboxylic acids, Esters	1690-1760
O-H	Monomeric alcohols. Phenols	3610-3640 (v)
	Hydrogen bonded alcohols, Phenols.	3200-3600 (broad)
	Carboxylic acids.	2500-3000 (broad)
N-H	Amines.	3300-3500 (m)
C-N	Amines.	1180-1360.
C≡N	Nitriles.	2210-2260 (v)
110	Nitro compounds	

Nitro compounds

-NO₂

cma chemical shits

Double	Bonds		
Structure unit	Frequency cm ⁻¹	Type of	Chemical Shibt
C=C	1620-1680	combon	(8) PPM
C=O Aldehydes and ketones	1710-1750	RCA3	0-35
Carboxylic acids Acid anhydrides Acyl halides	1700-1725 1800-1850 & 1740-1790 1770-1815	RacHo BR	25-50
Esters	1730-1750	RCHOHN	50 -65
Amides	1680-1700	-CEC-	65-90
Substituted derivatives of Benzene		-(=(-	85 70
Mono substituted	730-770 & 690-710	\c=d	100 -175
Ortho-disubstituted	735-770	1	
Meta-disubstituted	750-810 & 680-730	10-0	190-220
Para-disubstituted	790-840	X=0	130 - 220

1515-1560, 1345-1385

		Characteristic	Proton Uni	emical Sniit	HNMK
Type of Proton		Chemical shift δ, ppm	Typ	oe of Proton	Chemical shift δ, ppm
Cyclopropai	10	0.2	Alcohols	H-C-OH	3.4 – 4
Primary	R-CH ₃	0.9 -1.8	Ethers	H-C-OR	3.3 – 4
	D CII	1.2	Г	DCCCC CII	27 41

	- Propre					
	Primary	R-CH ₃	0.9 -1.8	Ethers	H-C-OR	3.3 - 4
	Secondary	R_2CH_2	1.3	Esters	RCOO-C-H	3.7 - 4.1
	Tertiary	R ₃ CH	1.5	Esters	H-C-COOR	2 - 2.2
**	Vinylic	C=C-H	4.6 - 5.9	Acids	H-C-COOH	2 – 2.6
	Acetylenic	C≡C-H	2 - 3	Carbonyl comp	ounds H-C-C=O	2 - 2.7
	Aromatic	Ar-H	6 - 8.5	Aldehydic	RCH=O	9 - 10
-	Benzylic	Ar-C-H	2.2 - 3	Hydroxylic	RO-H	1 - 5.5
000000000000000000000000000000000000000	Allylic	C=C-C-H	1.7	Phenolic	ArO-H	4 – 12
	Fluorides	H-C-F	4 - 4.5	Enolic	C=C-O-H	15 - 17
	Chlorides	H-C-Cl	3 - 4	Carboxylic	RCOO-H	10.5 - 12
	Bromides	H-C-Br	2.5 - 4	Amino	R-NH ₂	1 – 5
Contract of the last	Iodides	H-C-I	2 - 4			