

5

5

5

V.P. & R.P.T.P. Science College, V.V. Nagar

Subject: Mathematics US05CMTH02

Max. Marks: 25

Real Analysis-II

Date: 03/10/2019

Timing: 11.00 am - 12.15 pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

- Q: 1. Answer the following by choosing correct answers from given choices.
 - [1] The sequence $\{S_n\}_{n=1}^{\infty}$, where $S_n = (-1)^n \left(1 + \frac{1}{n}\right)$ [A] is convergent [B] oscillates finitely [C] oscillates infinitely [D] is divergent
 - [2] A positive term series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if and only if [A] p < 1 [B] p > 1 [C] $p \leqslant 1$ [D] $p \geqslant 1$
 - [3] For $f(x,y) = x^3 3xe^y$ the value of $f_x(1,0)$ is [A] 0 [B] 1 [C] 2 [D] 3
 - [4] For a function f, if $f_x(a,b) < f_y(a,b)$ then at (a,b), f has [A] no extreme value [B] a minimum [C] a maximum [D] a stationery point
 - [5] For a function f, if $f_x(1,5) = 0$, $f_y(1,5) \neq 0$ then at (1,5), f has [A] an extreme value [B] no extreme value [C] a minimum [D] a maximum
- Q: 2. State and prove the Bolzano-Weierstarss theorem for sequence 5

OR

- Q: 2. Show that the sequence $\{r^n\}$ converges iff $-1 < r \le 1$.
- Q: 3. State and prove the comparision test of first type.

OR

- Q: 3. State and prove D' Alembert's ratio test.
- Q: 4. Show that $\lim_{(x,y)\to(0,0)} xy \frac{x^2 y^2}{x^2 + y^2} = 0$

OR

- Q: 4. Prove that, by the transformation u = x ct, v = x + ct, the partial differential equation $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$ reduces to $\frac{\partial^2 z}{\partial u \partial v} = 0$
- Q: 5. State and prove Taylor's theorem 5

OR

Q: 5. Find the maxima and minima of the function $x^3 + y^3 - 3x - 12y + 20$