V.P. & R.P.T.P. Science College, V.V. Nagar

Internal Test: 2019-20 Subject: Mathematics US05CMTH03 Max. Marks: 25 Metric Spaces Date: 05/10/2019 Timing: 11.00 am - 12.15 pm 5 Q: 1. Answer the following by choosing correct answers from given choices. [1] Every Cauchy sequence is [A] convergent [B] is not always convergent [C] divergent [D] none P. Scie [2] In a metric space (M, ρ) , its subsets M and ϕ are [B] closed but not open [A] open but not closed LIBRAR' [D] neither open nor closed [C] open as well as closed [3] If a subset A of a metric space M is totally bounded then it is [A] complete [B] unbounded [C] bounded [D] connected [4] With absolute value metric \mathbb{R} is [C] bounded [A] compact [B] complete [D] totally bounded [5] Every finite subset of a metric space is [A] unbounded [B] compact [C] dense [D] none Let (M, d) be a metric space and let $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ Then prove that Q: 2. 5 d_1 is a metric on MQ: 2. If ρ and σ are metrics for M and if there exists k > 1 such that $\frac{1}{L}\sigma(x,y) \leqslant \rho(x,y) \leqslant k\sigma(x,y), \quad \forall x,y \in M$ 5 then prove that ρ and σ are equivalent. Let (M_1, ρ_1) and (M_2, ρ_2) be two metric spaces and let $f: M_1 \to M_2$. Then f Q: 3. is continuous on M_1 if and only if $f^{-1}(G)$ is open in M_1 whenever G is open 5 in M_2 . OR. If E is any subset of the metric space M. Then show that \overline{E} is closed. 5 Q: 3. Prove that subset A of \mathbb{R} is totally bounded *iff* A is bounded. 5 Q: 4. OR State and prove generalized nested interval theorem. 5 Q: 4. Q: 5. If A is a closed subset of the compact metric space (M, ρ) , then prove that 5 the metric space (A, ρ) is also compact. OR.

Q: 5.

compact.

If the metric space M has the Heine-Borel property, then prove that M is

5